
Intigriti February 2022 Challenge: XSS Challenge 0222 by
aszx87410

In February ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member aszx87410.

Rules of the challenge
• Should work on the latest version of Firefox AND Chrome.
• Should execute alert (document.domain).
• Should leverage a cross site scripting vulnerability on this domain.
• Shouldn't be self-XSS or related to MiTM attacks.
• Should require no user interaction.

Challenge
To simplify a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0222.intigriti.io/

The most interesting part is the game shown at the bottom:

https://challenge-0222.intigriti.io/

Right click the game and choose “inspect” to open the developer tools.

The developer tools will highlight the part we wanted to inspect and we can see the game is another
webpage embedded as an iframe into the challenge page. This reveals the URL to the game itself.

Right click the link and choose “Open in new tab”

This opens a new browser tab and shows us the game and URL:
https://challenge-0222.intigriti.io/challenge/xss.html

https://challenge-0222.intigriti.io/challenge/xss.html

Next step is pretty easy. Just give the game a try and see what happens. We can choose a name and
set if we already played the game before.

Quick check what happens if I set the “No” for have you played the game before but this ends up in
the same result.

On purpose I left the URL bar out of the screenshots above but if you check it after using the game
we can already discover 2 URL parameters.

Have you ever played the game set to Yes:

Have you ever played the game set to No:

The following can be noticed about the application which we can use further down the challenge:

Parameter Parameter linked to input

URL parameter q Your name

URL parameter first Ever played game?

Next step is to dive into the source code and see if we can find or learn something there about this
game.

Right click the game webpage and choose inspect to open the developer tools

Goto the sources tab as we can see here which files are used on the client side to setup this game
webpage

We have:
- xss.html => the actual HTML page hosting the challenge (Seems completely client side)
- Google fonts that are embedded in the HTML page.
- NES CSS file version 2.3.0 hosted at unpkg.com creating the page styling and layout.

The Google fonts are not of our interest to setup an XSS attack. A quick check via Google of the
NES CSS file version 2.3.0 shows this is the last one and no exploit that I could find.

And 2.3.0 seems to be the latest release:

The game seems to be build from one HTML page “xss.html” which will be the one we need to
setup our XSS attack.

We take a dive into the HTML and Javascript code of this page. Open it in the developer tools.

The first part is the CSS or the styling of the page based on the NES CSS which is not interesting
for us:

The second part is HTML code which creates the input fields, radio buttons and submit button for
example. Pretty static so not interesting for a XSS attack.

The final part of the HTML page consists of Javascript. We are focussing on a XSS attack so this is
our target. I am not a developer and thus not a Javascript expert but I try to explain what I can read
from the code.

The first line sets the name of the window.

The green part: we can leave this as this is triggered when the submit button is used. Our XSS
attack must be a zero click exploit so the XSS should trigger without the victim clicking a button.

The blue part: is interesting as it takes the input from the parameters “q” and “first”. It verifies this
input quite strict.

This part of the code is only accessed if there is a “q=” in the URL.
Variable “uri” takes the complete URL as input and URL decodes it. Setting some breakpoint can
help understanding the code (F8 button to go a step further each time). The console can be used to
see variable values:

Variable “qs” is only a small part of the “uri” variable. It takes the part behind the “q” parameter
and drops the complete URL and the “first” parameter. It expects the parameters in a certain way: “?
q=” and “&first=”. This means we cannot change the parameter order.

Then the value of variable “qs” is checked for its length. It will only proceed to the “showModal”
function if it is 24 characters or less. If it is more then 24 characters an error will be shown.

The red part: is our showModal function which via innerHTML inserts our “qs” variable from the
previous part into the source code. This is interesting as it changes the source code and we control
it.

The “Welcome back” goes into the title of the showModal function and variable “qs” becomes the
content.

Both are then added to the source code via innerHTML.

Once finished loading, the source code shows both innerHTML values. Check the Elements tab of
the developer console:

Takeaways after our recon:

- 2 URL parameter used likes this: “?q=” and “&first=”
- We got injection into the HTML source code via the variable “qs” which is a part of the complete
URL and this is done via innerHTML
- Our variable “qs” can only have a maximum of 24 characters.
- variable “qs” seems to be our name or “q” url parameter

Step 2: Fuzzing the q URL parameter

As we noticed the “q” URL parameter is the most interesting one at this point. This one reflects into
the source code via innerHTML.

innerHTML is a known DOM XSS sink that could execute code but there is an important thing
about innerHTML. Lets say there would be no character limit then we could use our “q” parameter
to inject <script>alert()</script> into the HTML and we expect to see an alert box.

This will not happen because HTML5 foresees some security measures and innerHTML does not
execute Javascript between <script> tags:
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

Ok no problem there are other XSS payloads not using script tags that execute in HTML context:
 for example

Nice try but we hit the character limit:

Hmmm we should be able to shorten this payload. The Portswigger XSS cheat sheet can help
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

I focused on the img and svg tag as these are really short and only take 3 characters:

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

This one looks not to long and works in all browsers but still more then 24 characters:

I checked svg tag for possible no user interaction payloads that uses not to much characters and this
looks pretty good:

A space in Javascript can be changed to / so the payload becomes:

<svg/onload=alert()>

which is 20 characters

Wow great result in Chrome:

But nothing in Firefox:

I am still not sure why it does not work in Firefox with the <svg> payload as the Portswigger cheat
sheet says it should work, so I suspect it could be working in older versions of Firefox or there is
something in this challenge blocking this payload. If somebody can tell me what the reason is that
would be nice to know :-)

We have an alert box in Chrome so we are executing Javascript which is already very nice but we
need to alert(document.domain) according to the challenge rules which will be more then 24
characters.
Firefox does not work with the same payload so we need to find a solution for that also.

Here you can choose to find a working alert() box payload for both browsers or build further on a
working exploit for Chrome. I decided to make the XSS attack completely work in Chrome first.

Next step is to find a way to make our payload alert(document.domain) so we prove we can bypass
the 24 character limit.

Step 3: Bypassing the character limit

We have the alert() box at this point but it is not useful. It only shows us we have injected working
Javascript into the HTML source code. Using the alert() box to pop the document.domain requires
35 characters and will not pass the 24 character length check:

We are injecting between HTML <p> tags and <script> tags cannot be used so we need to trigger
“extra” Javascript in another way.

My first idea was to do something as following:

<svg/onload=showModal(‘ourinput’ , ‘ourinput’)>

In this way I hoped to trigger the showModal function again and get our input into the innerHTML.
Nice idea I guess but way to long for the 24 character limit.

The shortest way that I know to trigger some “extra” Javascript is the eval() function. Eval() is evil
you read mostly on the internet :-)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Actually eval() just tries to execute Javascript from whatever we give it :-)

The only question is then what are we going to execute with eval()?

 <svg/onload=eval()>

19 characters used so we have 5 characters left to execute within our eval(). 5 characters is really
limited so I thought we must take something from the source code that can contain more characters
when executed.
Our source code variables are a good chance to get us some luck and hide extra characters once they
get executed or evaluated.

The developer tools show following (I added a breakpoint in the source code just before the end at
line 149 to be able to see the value assigned to the variables)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Mainly the “uri” variable contains the full URL when executed by eval(). As we have control over
the URL via the 2 parameters this is very interesting.
We can easily smuggle extra Javascript via the “&first=” parameter which is not checked for its
character length and our eval() function will not hesitate to execute whatever we give to it :-)

Allright lets smuggle the alert() box then

Damn nothing happens and the reason is that eval() executes our full URL from the “uri” parameter
but an URL starts with https:// which means everything after // is seen as a comment in Javascript
and thus not excutable Javascript code.

Shown in visual studio code. See colour difference for code (grey) and comment part (green)

We cannot run any code behind the // so there is only one way out of this and that is using the next
line for our alert() box. Here shown in visual studio code:

A new line via the URL can be set with %0A in Javascript. This gives us following payload:

<svg/onload=eval(uri)>&first=%0Aalert()

This works like a charm in Chrome:

Finishing with alert(document.domain)

<svg/onload=eval(uri)>&first=%0Aalert(document.domain)

Ok we got Chrome where we want it to be executing our Javascript but Firefox is not working with
the <svg> tags. This needs to be fixed to complete this challenge.

Back to the Portswigger XSS cheat sheet and find other “short” enough tags that can do the same.

We have <svg> with “onload” event that fires in all browsers and we want no user interaction:

What else is possible according to Portswigger:

Honestly I checked them all and <style> seems to be good enough to bypass our character limit of
24, requiring no user interaction and working in all browsers:

<style/onload=eval(uri)>&first=%0Aalert(document.domain)

Full URL (copy and paste in browser): https://challenge-0222.intigriti.io/challenge/xss.html?q=
%3Cstyle/onload=eval(uri)%3E&first=%0Aalert(document.domain)

Chrome:

Firefox:

https://challenge-0222.intigriti.io/challenge/xss.html?q=%3Cstyle/onload=eval(uri)%3E&first=%0Aalert(document.domain
https://challenge-0222.intigriti.io/challenge/xss.html?q=%3Cstyle/onload=eval(uri)%3E&first=%0Aalert(document.domain

	Intigriti February 2022 Challenge: XSS Challenge 0222 by aszx87410
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Step 1: Recon
	Step 2: Fuzzing the q URL parameter
	Step 3: Bypassing the character limit

