Intigriti February 2022 Challenge: XSs Challenge 0222 by
aszx87410

In February ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member aszx87410.

(

Intigriti's February XSS challenge
By @aszx87410

Find a way to execute arbitrary javascript on the iframed page and win Intigriti swag.

s This challenge runs from the 7th of February until the 13th of February, 1:59 PM CET.

s Out of all correct submissions, we will draw six winners on Monday, the 14th of February:
o Three randomly drawn correct submissions
o Three best write-ups

Rules of the challenge

* Should work on the latest version of Firefox AND Chrome.

* Should execute alert (document.domain).

* Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

* Should require no user interaction.

Challenge

To simplify a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0222.intigriti.io/

The most interesting part is the game shown at the bottom:

-
kr

Intigriti's February XSS challenge
By @aszx87410

Find a way to execute arbitrary javascript on the iFramed page and win Intigriti swag.
Rules:

» This challenge runs from the 7th of February until the 13th of February, 11:59 PM CET.
« Out of all correct submissions, we will draw six winners on Monday, the 14th of February:
o Three randomly drawn correct submissions
o Three best write-ups
= Every winner gets a €50 swag voucher for our swag shop
+ The winners will be announced on our Twitter profile.
« For every 100 likes, we'll add a tip to announcement tweet.
+ Join our Discord to discuss the challenge!
The solution...

= Should work on the latest version of Chrome and FireFox.

Should execute alert (document.domain)

» Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

» Should be reported at go.intigriti.com/submit-solution.

= Should require no user interaction.

Test your payloads down below and on the challenge page here!

Let's pop that alert!

Welcome fto the
HSS5(etremely Short
Scripting) Game?

Hey! Choose a name for your
character

e

Lt

[2 Fhea W e]

https://challenge-0222.intigriti.io/

Right click the game and choose “inspect” to open the developer tools.

LR Rl e L R e Ll T R L T LT o ma e AL R

Let's pop that alert!

Back

Reload

Save As...

iy ome To the

Search images with Google Lens reme lg Ehn r +
Create QR code for this page + ing } EamE !

Translate to English

View Page Source T

View Frame Source
Reload Frame a name fTor gour

Inspect

||||||||||||L.l|m||||||||||||||||||||"|"|"|"||"|"""”"l"”""""""”"l"”""""""”"l"”""""""”""""""Wmmmml||||||||||||||||||||||||||||||||||||

e
—_

The developer tools will highlight the part we wanted to inspect and we can see the game is another
webpage embedded as an iframe into the challenge page. This reveals the URL to the game itself.

Right click the link and choose “Open in new tab”

Elements ~ Gonsol

Reveal in Sources panel
Open in new tab

Add attribute

Edit attribute

Edit as HTML

Duplicate element
Delete element

Cut

Copy

Copy link address
Copy file name

Hide element
Force state

Break on

This opens a new browser tab and shows us the game and URL:

https://challenge-0222.intigriti.io/challenge/xss.html

Intigrt e chall

chall x

c challenge-0222.intigriti.io)

Welcome to the
HE55 (edtremely Short
Scripting) Game?

Hey! Choose a name for your
character

L)
—_

% Rules

¢Can't be empty
¢Can’'t be longer than 24 characters

Your name

Have you ever played this game?
kYes No

https://challenge-0222.intigriti.io/challenge/xss.html

Next step is pretty easy. Just give the game a try and see what happens. We can choose a name and
set if we already played the game before.

Welcome to the
55 {eMtremely Short
Scripting}y Game?

Hey! Choose a name for your
character

e
—

72 Rules

¢Can't be empty
eCan't be longer than 24 characters

Your name

| soren

Have you ever played this game?
b Yes No

Welcome back!?
Joren

Quick check what happens if I set the “No” for have you played the game before but this ends up in
the same result.

Welcome back!

Joren

On purpose I left the URL bar out of the screenshots above but if you check it after using the game
we can already discover 2 URL parameters.

Have you ever played the game set to Yes:

& (& challenge-0222.intigriti.io

Have you ever played the game set to No:

< C challenge-0222.intigriti.io

The following can be noticed about the application which we can use further down the challenge:

Parameter Parameter linked to input

URL parameter q Your name

URL parameter first Ever played game?

Next step is to dive into the source code and see if we can find or learn something there about this
game.

Right click the game webpage and choose inspect to open the developer tools

Welcome to the
HS5S(etremely Short
Scripting) Game'?

Hey! Choose a name for your
character

"o
—_

72 Rules

#+Can’'t be empty
Back #«Can't be longer than 24 characters

Reload

Save As...
Print... Your name

Cast...
Search images with Google Lens

Create QR code for this page
Translate to English Have you ever played this game?

View Page Source b Yes Ho

Inspect

Goto the sources tab as we can see here which files are used on the client side to setup this game
webpage

DevTools - challenge-0222.intigriti.iofchallengefxss.htmi?g=Jorenafirst=no

We have:

- xss.html => the actual HTML page hosting the challenge (Seems completely client side)
- Google fonts that are embedded in the HTML page.

- NES CSS file version 2.3.0 hosted at unpkg.com creating the page styling and layout.

The Google fonts are not of our interest to setup an XSS attack. A quick check via Google of the
NES CSS file version 2.3.0 shows this is the last one and no exploit that I could find.

NES C8S

https:/fnostalgic-css.github.io » NES
NES.css - NES-style CSS Framework

NES.css only provides components. You will need to define your own layout. Texts. Primary
Success Warning ...

nostalgic-css.github.lo/NE

El MES.css Share on SNS
L

NES-stule CSS Framework. D n

S ——"
ZFork me *
fon GitHub |

i About i

NES.css is NES-style (8bit-like) CSS Framework.

3 |

I Installation
NES.css is available via either npm or Yarn, or a CDN.

Please read README.md.

I Usage

NES.css only provides components. You will need to define your
own layout.

[Texts
Primary Error

[Buttons

0 0 = D

|[)153b19d | |Sele|:1‘ your file |

And 2.3.0 seems to be the latest release:

) WhyGitHub? - Team Enterprise Explore - Marketplace Pricing Search Signin Signup

Ar ES.css Publi Sponsor £} Notifications ¥ Fork 15k T star 18k

<> Code Issues (34 Pull requests (20 Actions Projects Security Insights

jevelop ~ | 1 10 branches &7 tac Gotofie [NCodesl] About

NES-style CSS Framework | 7
uastallaigor Merge pull request #4¢ 094 C 021 D827 comm BCSS7 L—L7—2
circleci
aithub,

book

Releases 7
ditorconfig
v2.30
gitignore.

O npmignore

orottierignore

The game seems to be build from one HTML page “xss.html” which will be the one we need to
setup our XSS attack.

We take a dive into the HTML and Javascript code of this page. Open it in the developer tools.

The first part is the CSS or the styling of the page based on the NES CSS which is not interesting
for us:

cantent=

(270deq, #71dB00, #115520, #750

{
LU

{
2rem;

#main-modal

(e, 8, 8, 8.4);

98apx) {

The second part is HTML code which creates the input fields,
example. Pretty static so not interesting for a XSS attack.

ely Short Scripting) Gam

your characte

></1> Rules
>

n 24 characte

=

ame

names

=Error!</his>

onclick='

radio buttons and submit button for

=0K</button>

The final part of the HTML page consists of Javascript. We are focussing on a XSS attack so this is
our target. I am not a developer and thus not a Javascript expert but I try to explain what I can read

from the code.

The first line sets the name of the window.

window.name Scripting)

showtodal(title, content) {
tit1eDOM = document. querySelector(
contentDOM = document. querySelector(' #ais
titleDOM. innerHTML = title
contentDOM. inner
window['nain-modal']. classList.remove(hide')
»

window[‘main-forn'].onsubmit
e.preventbefault()
inputName = window['name—field'].value
isFirst = document.querySelector("input [type=:
if (inputName.length) {
showtodal (' , "It's empty")
return

>

if (inputName.
showodal ('
return

»

window. location.search = "7g=" + encodeURIComponent (inputName) + '&first=' +

if (location.href.includes('g=")) {
‘0deURTComponent (Location. href)
split('&first=")[0].split(7

This function is triggered when the submit button is clicked and checks the input

The green part: we can leave this as this is triggered when the submit button is used. Our XSS
attack must be a zero click exploit so the XSS should trigger without the victim clicking a button.

The blue part: is interesting as it takes the input from the parameters “q” and “first”. It verifies this
input quite strict.

if (location.href.includes('g="')) {
uri = decodeURIComponent({location.href)
qs = uri.split('&first=")[08].split('?g=")I[1]
if (qgs.length = 24} {
showModal('Error!"', "Length eds 24 it short!")
} else {

showModal('w me back!', gs)

This part of the code is only accessed if there is a “q=" in the URL.

Variable “uri” takes the complete URL as input and URL decodes it. Setting some breakpoint can
help understanding the code (F8 button to go a step further each time). The console can be used to
see variable values:

[{P=S2)

Variable “gs” is only a small part of the “uri” variable. It takes the part behind the “q” parameter
and drops the complete URL and the “first” parameter. It expects the parameters in a certain way: “?
gq=" and “&first=". This means we cannot change the parameter order.

Then the value of variable “gs” is checked for its length. It will only proceed to the “showModal”
function if it is 24 characters or less. If it is more then 24 characters an error will be shown.

The red part: is our showModal function which via innerHTML inserts our “qs” variable from the
previous part into the source code. This is interesting as it changes the source code and we control
it.

The “Welcome back” goes into the title of the showModal function and variable “qs” becomes the
content.

{inputName.length >
showModal{"Error “Length

}

'7g=" + encodeURIComponent(inputName) + '&firsty™ + 1sFirst

{qs. leng
showMadal
) {

* showModal (W
>

Both are then added to the source code via innerHTML.

contentDOM. innerHTML =)
Winoow|[mdif-modd Ll | . Classeist. remave('k
1
}

Once finished loading, the source code shows both innerHTML values. Check the Elements tab of
the developer console:

DevTools - challenge-0222.intigriti.iofchallengefxss.html?g=Joren&first=no

Elements

Takeaways after our recon:

- 2 URL parameter used likes this: “?q="and “&first="

- We got injection into the HTML source code via the variable “qs” which is a part of the complete
URL and this is done via innerHTML

- Our variable “gs” can only have a maximum of 24 characters.

- variable “gs” seems to be our name or “q” url parameter

Step 2: Fuzzing the q URL parameter

€€

As we noticed the “q” URL parameter is the most interesting one at this point. This one reflects into
the source code via innerHTML.

innerHTML is a known DOM XSS sink that could execute code but there is an important thing
about innerHTML. Lets say there would be no character limit then we could use our “q” parameter
to inject <script>alert()</script> into the HTML and we expect to see an alert box.

This will not happen because HTML5 foresees some security measures and innerHTML does not
execute Javascript between <script> tags:

https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

Security considerations

It is not uncommon to see innerHTMI used to insert text into a web page. There is potential for this to
become an attack vector on a site, creating a potential security risk.

const name = "John";
// assuming 'el’' is an HTML DOM element
el.innerHTML = name; // harmless in this case

/f
i

name = "<gecript>alert('I am John in an annoying alert!')</script>";
el.innerHTML = name; // harmless in this case

Although this may look like a cross-site seripting (@ attack, the result is harmless. HTML5 specifies that a
<script> tag inserted with innerHTML should not execute 7.

https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

Ok no problem there are other XSS payloads not using script tags that execute in HTML context:
 for example

Nice try but we hit the character limit:

challenge-0222.intigriti o]

Error?
Length exceeds 24, keep it short!

Hmmm we should be able to shorten this payload. The Portswigger XSS cheat sheet can help
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

I focused on the img and svg tag as these are really short and only take 3 characters:

Copy tags to clipboard Copy events to clipboard Copy payloads to clipboard

html All events All browsers
i onactivate Chrome
iframe onafterprint Firefox
onafterscriptexecute Safari
E img onanimationcancel Edge
onanimationend
ins onanimationiteration
isindex onanimationstart
onauxclick
keygen onbeforeactivate
Event handlers that do not require user interaction ~
Even! Description Tag: Code: Copy
onactivate
i Fires when the element is activated img v @ e

onafterscriptexecute
it Fires after scriptis executed img v
onanimationcancel

Fires when a CSS animation cancels img v

@

onanimationend

it Fires when a CSS animation ends img v
Aana

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

This one looks not to long and works in all browsers but still more then 24 characters:

ondeactivate

Gompatibility Fires when the element is deactivated img - @ °
e <input id=y autofocus>

onerror

Compatibility Fi¥es when the resource fails to load or

G E/ e Q cguses an error

img - @ o

onfocus

Compatibility Fires when the element has focus ima v ﬁ a

I checked svg tag for possible no user interaction payloads that uses not to much characters and this
looks pretty good:

onload

Compatibility Fires when the element is loaded svg v <svg onload=alert(1)> @ e

ceco

A space in Javascript can be changed to / so the payload becomes:
<svg/onload=alert()>

which is 20 characters

Wow great result in Chrome:

challenge-0222.intigriti. o]

challenge-0222.intigriti.io says

But nothing in Firefox:

intigriti.io)

I am still not sure why it does not work in Firefox with the <svg> payload as the Portswigger cheat
sheet says it should work, so I suspect it could be working in older versions of Firefox or there is
something in this challenge blocking this payload. If somebody can tell me what the reason is that
would be nice to know :-)

We have an alert box in Chrome so we are executing Javascript which is already very nice but we
need to alert(document.domain) according to the challenge rules which will be more then 24
characters.

Firefox does not work with the same payload so we need to find a solution for that also.

Here you can choose to find a working alert() box payload for both browsers or build further on a
working exploit for Chrome. I decided to make the XSS attack completely work in Chrome first.

Next step is to find a way to make our payload alert(document.domain) so we prove we can bypass
the 24 character limit.

Step 3: Bypassing the character limit

We have the alert() box at this point but it is not useful. It only shows us we have injected working
Javascript into the HTML source code. Using the alert() box to pop the document.domain requires
35 characters and will not pass the 24 character length check:

onload=alert{document. domain)=".length

We are injecting between HTML <p> tags and <script> tags cannot be used so we need to trigger
“extra” Javascript in another way.

t Scripting) Gamel</hl>

My first idea was to do something as following:
<svg/onload=showModal(‘ourinput’, ‘ourinput’)>

In this way I hoped to trigger the showModal function again and get our input into the innerHTML.
Nice idea I guess but way to long for the 24 character limit.

The shortest way that I know to trigger some “extra” Javascript is the eval() function. Eval() is evil
you read mostly on the internet :-)

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global Objects/eval

eval()

Warning: Executing JavaScript from a sfring is an enormous security risk. It is far too easy for a bad actor
to run arbitrary code when you use eval() . See Never use eval()!, below.

The ewval() function evaluates JavaScript code represented as a string.
Actually eval() just tries to execute Javascript from whatever we give it :-)

The only question is then what are we going to execute with eval()?

<svg/onload=eval()>

=eval()=>".length

19 characters used so we have 5 characters left to execute within our eval(). 5 characters is really
limited so I thought we must take something from the source code that can contain more characters
when executed.

Our source code variables are a good chance to get us some luck and hide extra characters once they
get executed or evaluated.

The developer tools show following (I added a breakpoint in the source code just before the end at
line 149 to be able to see the value assigned to the variables)

: Console

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval

Mainly the “uri” variable contains the full URL when executed by eval(). As we have control over
the URL via the 2 parameters this is very interesting.

We can easily smuggle extra Javascript via the “&first=" parameter which is not checked for its
character length and our eval() function will not hesitate to execute whatever we give to it :-)

challenge-0222.ntigriti.o

Welcome 1o the
HS5S(eXtremely Short
Scripting) Game?

Allright lets smuggle the alert() box then

challenge-0222.ntigrit.jo

Waleama 4na Hhao

Damn nothing happens and the reason is that eval() executes our full URL from the “uri” parameter
but an URL starts with https:// which means everything after // is seen as a comment in Javascript
and thus not excutable Javascript code.

Shown in visual studio code. See colour difference for code (grey) and comment part (green)

We cannot run any code behind the // so there is only one way out of this and that is using the next
line for our alert() box. Here shown in visual studio code:

https:

alert()

A new line via the URL can be set with %0A in Javascript. This gives us following payload:

<svg/onload=eval(uri)>&first=%0Aalert()

This works like a charm in Chrome:

challenge-0222.ntigriti.fo

challenge-0222.intigriti.io says

Finishing with alert(document.domain)

<svg/onload=eval(uri)> &first=%0Aalert(document.domain)

& 5 X v challenge-0222.intigrtiio

Ok we got Chrome where we want it to be executing our Javascript but Firefox is not working with
the <svg> tags. This needs to be fixed to complete this challenge.

Back to the Portswigger XSS cheat sheet and find other “short” enough tags that can do the same.

We have <svg> with “onload” event that fires in all browsers and we want no user interaction:

Event handlers N
Copy tags to clipboard Copy events to cliphoard Copy payloads to clipboard
strike [OTTESTICTIETTgE .
strong on}npu; Chrom
style oninvalid Firefor
sub onkeydown Star
summary onkeypress Edge
sup onkeyup
svg onload
svg -> animate onloadeddata
svg -> animatemotion onloadedmetadata
svg -> animatetransform onloadend
i~ Lonloadstarf
~

Event handlers that do not require user interaction

Event: Description

onload

ceco

Fires when the element is loaded

Tag: Code

svg “ <svg onload=alert(1l)>

Copy

00

What else is possible according to Portswigger:

Event handlers

Copy tags to clipboard Copy payloads to clipboard

sirike

strong

style

sub

summary

sup

svg

svg -> animate

svg -> animatemotion
svg -> animatetransform

e e

Event handlers that do not require ug

Event: Description:

onload

Compatibility: Fires when the element is loaded

eeco

body
embed
frame
iframe

image

image2

image3

img

img2

img2

input

isindex

link Code:
object

script

style
v svg
track

<svg onload=alert(l)>

e
All browsers
Chrome
Firefox
Safari
Edge
P

Copy:

Honestly I checked them all and <style> seems to be good enough to bypass our character limit of
24, requiring no user interaction and working in all browsers:

Event handlers that do not require user interaction .
Event: Description Tag Code Copy
onload

Fires when the element is loaded <style onload=alert(l)></style>
ceco ®0

<style/onload=eval(uri)>&first=%0Aalert(document.domain)

Full URL (copy and paste in browser): https://challenge-0222.intigriti.io/challenge/xss.html?q=
%3Cstyle/onload=eval(uri)%3E &first=%0Aalert(document.domain)

Chrome:

Firefox:

intigriti.io/

https://challenge-0222.intigriti.io/challenge/xss.html?q=%3Cstyle/onload=eval(uri)%3E&first=%0Aalert(document.domain
https://challenge-0222.intigriti.io/challenge/xss.html?q=%3Cstyle/onload=eval(uri)%3E&first=%0Aalert(document.domain

	Intigriti February 2022 Challenge: XSS Challenge 0222 by aszx87410
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Step 1: Recon
	Step 2: Fuzzing the q URL parameter
	Step 3: Bypassing the character limit

