Intigriti February 2023 Challenge: XSS Challenge 0223 by Dr Leek

In February ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by community member Dr Leek.

This is your own official Leek "NFT"!?

Your "HFT" ID:
cO3bcaee-b 354225 —acvo—-325T3a654c6a

Image Properties:

Image name: HFT. jipa
Image comment: Hone
Created: 02-°15-2023, 19:24:41

Rules of the challenge

Should work on the latest version of Firefox AND Chrome.
Should execute alert (document.domain).

Should leverage a cross site scripting vulnerability on this domain.
Shouldn't be self-XSS or related to MiTM attacks.

Should NOT use another challenge on the intigriti.io domain.

Challenge

To simplify a victim needs to visit our crafted web URL for the challenge page and arbitrary
Javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0223.intigriti.io/

< C' @& challenge-0223.intigriti.io

Intigriti's February challenge by Dr Leek

Find a way to execute arbitrary javascript on the iframed page and win Intigriti swag.
Rules:

¢ This challenge runs from the 13th of February until the 19th of February, 11:59 PM CET.

» Out of all correct submissions, we will draw six winners on Monday, the 20th of February:
o Three randomly drawn correct submissions
o Three best write-ups

e Every winner gets a €50 swag voucher for our swag shop

¢ The winners will be announced on our Twitter profile.

¢ For every 100 likes, we'll add a tip to announcement tweet.

» Join our Discord to discuss the challenge!

The solution...

* Should work on the latest version of Chrome and FireFox.

¢ Should execute alert the challenge domain.

¢ Should leverage a cross site scripting vulnerability on this domain.
+ Shouldn't be self-XSS or related to MiTM attacks.

¢ Should NOT use another challenge on the intigriti.io domain.

» Should be reported at go.intigriti.com/submit-solution.

| Test your payloads down below and on the challenge page here!

Let's pop that alert!

This is your own official Leek "NFT"?

Your "HFT" ID:
cO3bcaee-bfo5 4225 -acTo-3IZ5 Tf3at5d4ct6a

https://challenge-0223.intigriti.io/

The most interesting part is the iframe shown at the bottom. This is an iframe to the challenge itself.
By inspecting the source code we can go to the web page included in this iframe.

Right click somewhere in the iframe and choose inspect:

* Should work on the latest version of Chrome and FireFox.
* Should exg i

e Should | "ty on this domain.
¢ Shouldn]
¢ Should Reload Ctrl+R i.io domain.

* Should b blution.

Save as...

Test your pa Hilfie U - page here!
Cast...
Let's pop that Search images with Google

Create QR Code for this page

Translate to English al Leaek "NFT"™?

EditThisCookie

View page source
View frame source b-325f3achd4cta
Reload frame

Inspect

The web page in this iframe is located at “/create”

evTools - challenge-0223.intigriti.io
Devlools - challenge-0223.intigriti.io/

Elements

PE html>

V#document
<IDOCTYPE html> .nes i nes.min.css:11

{ nes.min.css:11
: border-box;

play: block;

body

body, view?viewId..f3a654c6a:6
‘

{
mily: "Press Start 2p";

nes.min.css:11

ng: antialiased;

nes.min.css:11

nes.min.css:ll

This gives us following URL: https://challenge-0223.intigriti.io/create

Once we open this page the options to create a NFT become more clear. We can adapt our NFT via
some arrows and at the bottom we can upload our own background image.

&< > C & challenge-0223.intigriti.io/create

Create your own ofhcial Leek
“"MFT"?

— Upload your own background?

Select vyour ﬁlel |5uhmif|

https://challenge-0223.intigriti.io/create

First step is simple just use the functionality and see what the application is doing.
I changed my NFT via the arrows and uploaded a picture to be set as background.
Once finished click Save.

& C' @ challenge-0223.intigriti.io/create

Create your own official Leek
“"MFT"?

H] H]
S EmniREa TR AR "~ S aEnaaEaRERERER -

. Upload your own background?

file uploaded successfully to cO3bcaee-bf55-4225-ac75-325f3a654c6a

Our NFT is being created with our background and a new URL parameter is revealed “viewld”. We
can also notice that the view ID is reflected on the page and also the image name, image comment
and creation date. This could be interesting to check later.

C & challenge-0223.intigriti.io/view?viewld=c0O3bcaee-bf55-4225-ac75-325f3a654c6a

This is your own official Leek "MHFT"?

Your "HFT" ID:
cOZbcaee-bfo5-4225—-ac7To—325Tf3ac53494cEa

Image Properties:

Image name: HFT. jpa
Image comment: Hone
Created: 02152023, 20:04:357

Application functionalities are clear lets have a look at the source code behind this NFT application.
Inspect the web page again by right clicking it somewhere and choosing inspect.

I am not a JavaScript expert but I try to understand what is happening in the background. After
using the application some parts should become clear even if you are not that experienced with
JavaScript.

@ Devlools - challenge-0223.intigriti.io/view?viewld=c03bcaee-bf55-4225-ac75-325f3a654c6a

This part is less interesting except for the
comment of Dave the intern who made the
code and need to fix some bugs ;-) Let's find
the bug before Dave comes back from his
coffee break!

This part only prepares the HTML fields at the
bottom in case no OwnerName or
UserComment is defined

This concludes the recon part. Here is what I have in my notes at this moment:

- The viewld parameter reflects on the page and could possibly influence the path where the image
is loaded from.

- We can upload a background image. The source code uses image metadata via the EXIF library
which is eventually also reflected onto the page.

- EXIF metadata that is read by the application: UserComment, DateTime, OwnerName

- UserComment, DateTime and OwnerName are being sanitized by DOMPurify.

- ImageName seems to be set fixed to NFT.jpg and is thus not sanitized before being reflected onto
the page.

Step 2: Viewld parameter reflection

I decided to start with the viewId parameter reflection as this is easy to test. Change the parameter
and see how the application responds. I use simple HTML input to see if the HTML I input via the
parameter gets rendered onto the page.

< > C & challenge-0223.intigritiio/view?viewld=c03bcaee-bf55-4225-ac75-325f3a654c6a

This is your own [official Leek "HNFT"?

Your "HFT"™ ID:
cO3Zbcaee-bTfo5 4225 —acVo 325 T3IacSd4cea

C @ challenge-0223.intigriti.io/view?viewld= <s>test</s>

This is your (own official Leek "NFT"?

Your "MHFT" ID:
HICsHIEtestHIC.s%3E

sHere would be your cool
Leek HFT

This leads to nowhere as our input is being URL encoded and not rendered as HTML. For HTML
injection we would need to see our <s>test</s> converted to test.

Step 3: EXIF library

The next things we noted during our recon is the fact we can upload a background image and have
some control on the EXIF metadata being embedded into this image. The EXIF metadata “Image
name, comment and creation time” is being reflected onto the web page.

So how does this EXIF metadata actually work for images?
I will show it here using a Linux machine via command line but this metadata can also be edited
via some photo editors or command line on Windows.

The command to see the metadata is pretty easy: exiftool background.png

= root@ub22-reconbox: frecon X 50| 2

root@ub22-reconbox:/reconbox# exiftool background.png
ExifTool Version Number : 12.40

File Name : background.png

Directory HE

File Size : 6.4 KiB

File Modification Date/Time :2023:02:15 19:41:10+00:00
File Access Date/Time : 2023:02:15 21:06:28+00:00
File Inode Change Date/Time : 2023:02:15 21:06:28+00:00
File Permissions I —I'WXr--r—-

File Type : PNG

File Type Extension : png

MIME Type : image/png

Image Width : 126

Image Height : 109

Bit Depth : 8

Color Type : RGB with Alpha
Compression : Deflate/Inflate

Filter : Adaptive

Interlace : Noninterlaced

SRGB Rendering : Perceptual

Gamma R 2ol

Pixels Per Unit X : 5669

Pixels Per Unit Y : 5669

Pixel Units : meters

Image Size : 126x109

Megapixels : 0.014
root@ub22-reconbox:/reconbox#

The command outputs all metadata attached to this “background.png” image file.

We are interested in: “Image OwnerName, User comment and creation time” and normally also the
image name as we saw in the source code as this one is not sanitized by DOMpurify but that name
was not extracted from the EXIF data but set fixed to NFT.jpg.

OwnerName or UserComment are nowhere to be seen and creation times are already set. Let’s add
an Owner and User comment by ourselfs. I had no idea how to do this but quick Google search

shows following command can be used:

exiftool -UserComment="test123' -OwnerName="test456' background.png

root@ub22-reconbox:/reconbox#t exiftool -UserComment='testl23' -OwnerName='testd456' background.png

1 image files updated

Let’s check our changes that we made:

root@ub22-reconbox: /reconbox# exiftool background.png
ExifTool Version Number ;12,40

File Name : background.png

Directory 8 o

File Size : 6.6 KiB

File Modification Date/Time : 2023:02:15 21:15:06+00:00
File Access Date/Time 1 2023:02:15 21:15:06+00:00
File Inode Change Date/Time : 2023:02:15 21:15:06+00:00
File Permissions ! —rwxr

File Type : PNG

File Type Extension : png

MIME Type : image/png

Image Width : 126

Image Height : 109

Bit Depth : 8

Color Type : RGB with Alpha
Compression : Deflate/Inflate

Filter : Adaptive

Interlace : Noninterlaced

SRGB Rendering : Perceptual

Gamma R 2ol

Pixels Per Unit X : 5669

Pixels Per Unit Y : 5669

Pixel Units : meters

Exif Byte Order : Big-endian (Motorola, MM)
X Resolution g 72

Y Resolution g 72

Resolution Unit : inches

Y Cb Cr Positioning : Centered

Exif Version 1 0232

Components Configuration : Y, Cb, Cr, -

User Comment : testl23

Flashpix Version 1 0100

Color Space : Uncalibrated

Owner Name : testd56

Image Size : 126x109

Megapixels : 9.014
root@ub22-reconbox:/reconbox#

Ok great, we can now upload this adapted image as background for our NFT in the application and
check if we get some reflection.

&< - C @& challenge-0223.intigritiio/create

Create your own official Leek
"NFT"?!

ST

>

ey

ST

Upload your own background!

file uploaded successfully to 310bfd34-0fc7-4ec3-b0c2-c5b15bd27d40

Image Properties:

Image name: HFT. jpg

Image comment: testl1l23
Created: 0271572023, Z21:22:35%8

This is good our User comment is reflected. Now the logical next step is to inject HTML and finally
a XSS payload but remember that we noticed something else during our recon. The image comment
before it is being added as HTML into the web page gets sanitized by DOMPurify. This is
something we will need to bypass.

strown = "I

" '+ strecol + " L, "img ent”: ™ "+ strval +" " }°

DOMPurify. temp.imgComment);

DOMPurify.sanit imgColorType);
rrr.innerHTML " + DOMPurify.s.

(=)
console. log
LEL ST e(imgobj).
i : S imgobj).1i

Step 4: DOMPurify

So we have some reflection via the EXIF metadata on our background image but DOMPurify will
sanitize our input before being embedded in the HTML web page.

DOMPurify can be found here: https://github.com/cure53/DOMPurify

To be short about it: DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for
HTML, MathML and SVG.

An XSS sanitizer is a problem if we want to solve this challenge ;-)

First idea at this moment bypass DOMPurify, it had some bugs in the past via XSS mutations that
would bypass the sanitisation check and execute the XSS.
Which version is being used in this challenge that is what I checked first at this moment.

id
id
id
id

.search;
L URLSearchParams(para);
viewId = urlParams.get(’ 2
document.ge
document.ge

dccumént.getElememtEyId(”vie
tData(imgtrgt, 01
1

strval
strval

Version 2.4.1 of DOMPurify.

https://github.com/cure53/DOMPurify

Gareth Heyes from Portswigger had some nice bypasses that can be found here:
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

Unfortunately for us these are patched in version 2.1 so useless for this challenge. I went to the
Github page of DOMPurify to check on the release notes. We are facing version 2.4.1 so my
interest is to see what they fixed in later versions if those exist.
(https://github.com/cure53/DOMPurify/releases)

» Assets

®

DOMPurify 2.4.3

* Final release that is compatible with MSIE10 & MSIE 11

Compare v

» Assets 2

DOMPurify 2.4.2

P
© 24z

-O- flelgef

» Fixed a Trusted Types sink violation with empty input and NAMESPACE , thanks @tosmolka

s Fixed a Prototype Pollution issue discovered and reported by @kevin-mizu
Compare ~

Contributors

s €2

tosmolka and kevin-mizu
» Assets 2

@

DOMPurify 2.4.1

» Added new config option 'ALLowED_nAMESPACES for better XML handling, thanks @kevin-deyoungster @tosmolka

» Added better detection of template literals when ' SAFE_FOR_TEMPLATES is ' true

DOMPurify 2.4.2 which is the release after the one we are facing has a prototype pollution fix so it
might be the application code is vulnerable to this prototype pollution and that we can use this to
trick the DOMPurify sanitization to let our XSS payload bypass.

I did some Googling at this point for @kevin-mizu to see if somewhere this prototype pollution
exploit was made public.

I checked this Twitter feed for example and other Google hits I got but could not find the exploit or

https://github.com/cure53/DOMPurify/releases
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

any steps how to perform this prototype pollution attack. This is for me a dead end as researching
and trying to figure out how to perform the attack will be to time consuming and probably I will
never find it.

Cureb53 am=

DOMPurify 2.4.2 was released, addressing a Trusted Type sink violation
occurring under certain circumastances.

Further fixed is a Prototype Pollution issue, thanks a lot
reporting. New release is here:

New Release 2.4.2

DOMPurify 2.4.2

ink violation with empty input and
Dtosmolka

ype Pollution issue discovered and reported b..
. { 3
o Contributors

Release DOMPurify 2.4.2 - cure53/DOMPurify

Step 5: Image name reflection

The DOMPurify bypass is a dead end for me at this moment. I got back to the notes taken after
recon and this was still there:

ImageName seems to be set fixed to NFT.jpg and is thus not sanitized before being reflected onto
the page.

The only reflection on the web page not being sanitized is the image name. There is only 1 problem
the developers put a fixed name for the image in the source code. As they set a fixed name they
probably trust that this cannot be altered so in their mind no sanitisation check is needed.

The question that now rises: Can we change the image name before it gets embedded into the
HTML web page?

}
if(strcol == undefined || strcol.length == 8)

strcol = "None";

if(strcol == undefined || strcol.length == 8)

strown = "None™;

" '+ strcol +° 7 ,"imgComment™: " '+ strval +' " }°;

= 150

console. (

The image name is being set fixed to NFT.jpg in the JSON code. If you look closely to this
“imgobj” JSON above we do control a part of this JSON and that is the image comment
(imgComment) via the EXIF metadata.

So the imgobj will be following JSON:
First the imgobj JSON is being created by the developers of this application and then they parse
each object of this JSON separately to be added to the HTML source code. We are controlling the

imgComment inside this JSON via our uploaded background image metadata.

If you know a bit about JSON you know this can become tricky to parse the JSON object if a users
controls some input.

We can add what we want as UserComment so we are controlling the last part of the JSON object
and that is interesting.

What if we add in our image background as metadata in the UserComment the imgName again?

This would mean the imgobj will end up with following JSON:
test123 ",
"imgName":"ANYTHINGWEWANT

Notice we can add an extra imgName key into the JSON. It will then depend on the application
parsing this which it will choose as output to be shown on the web page and in most cases it will
parse the first imgName key and then it will get to the second imgName key and forget about the
first one and just overwrite it :-)

" '+ strcol +" " ,"imgComment™: ™ '+ strval +" " }°;

We need to inject in the “strval” variable and be sure to keep the JSON valid so our injected
metadata needs to look like this:

test123","imgName":"

test123", This closes the imgComment JSON key nicely

"imgName":"<img src=x We add a new key with the imgName but

onerror=alert(document.domain)> without closing with “ because the JavaScript
code will do this for us.

We are adding the red part in the JSON example below:

test123 ",
"imgName":"

Following command needs to be done with exiftool:

exiftool -UserComment="test123","imgName":"'
background.png

root@ub22-reconbox:/reconbox# exiftool -UserComment='test123" K "imgName":"' bac
kground.png

1 image files updated
root@ub22-reconbox:/reconbox#

root@ub22-reconbox:/reconbox# exiftool background.png
ExifTool Version Number : 12.40

File Name : background.png

Directory HE

File Size : 6.7 KiB

File Modification Date/Time 1 2023:02:15 22:06:38+00:00
File Access Date/Time : 2023:02:15 22:06:38+00:00
File Inode Change Date/Time 1 2023:02:15 22:06:38+00:00
File Permissions I —IWXr--r—-

File Type : PNG

File Type Extension : png

MIME Type : image/png

Image Width : 126

Image Height : 109

Bit Depth : 8

Color Type : RGB with Alpha
Compression : Deflate/Inflate

Filter : Adaptive

Interlace : Noninterlaced

SRGB Rendering : Perceptual

Gamma R 2ol

Pixels Per Unit X : 5669

Pixels Per Unit Y : 5669

Pixel Units : meters

Exif Byte Order : Big-endian (Motorola, MM)
X Resolution g 77

Y Resolution g 72

Resolution Unit : inches

Y Cb Cr Positioning : Centered

Exif Version : 0232

Components Configuration Y, Cb, Cr, -

User Comment : testl23","imgName":"
Flashpix version T 0100

Color Space : Uncalibrated

Owner Name : testldS6

Image Size : 126x109

Megapixels : 0.014
root@ub22-reconbox:/reconbox#

We upload the background again in the NFT application and create a new NFT image. This will fire
the XSS payload as the JavaScript parsing chooses the second image name JSON key as the one
being rendered into the page.

I added a breakpoint so you can see the altered imgobj JSON

if(strcol == undefined || strcol.length == @)

strcol = “"None”;

}

if(strcol == undefined || strcol.length == @)

ar t = JSON.string.

console.log " + x.toString()):

The image name which was hard coded set to NFT.jpg is skipped due to our second JSON key
being added and JSON parsing forgets about the first key. No DOMPurify sanitisation as the
developer was sure the image name could not be changed.

Image Properties:

Image name: [

Image comment: testlZ3
Created: 0271572023, 22:14:11

You can now deliver your URL (Add your unique ID): https://challenge-0223.intigriti.io/view?
viewld=YOURID to any victim and the XSS will fire.

challenge-0223.intigriti.io says

challenge-0223.intigriti.io

https://challenge-0223.intigriti.io/view?viewId=YOURID
https://challenge-0223.intigriti.io/view?viewId=YOURID

