
Intigriti February 2023 Challenge: XSS Challenge 0223 by Dr Leek

In February ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by community member Dr Leek.

Rules of the challenge
• Should work on the latest version of Firefox AND Chrome.
• Should execute alert (document.domain).
• Should leverage a cross site scripting vulnerability on this domain.
• Shouldn't be self-XSS or related to MiTM attacks.
• Should NOT use another challenge on the intigriti.io domain.

Challenge
To simplify a victim needs to visit our crafted web URL for the challenge page and arbitrary
Javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0223.intigriti.io/

https://challenge-0223.intigriti.io/

The most interesting part is the iframe shown at the bottom. This is an iframe to the challenge itself.
By inspecting the source code we can go to the web page included in this iframe.

Right click somewhere in the iframe and choose inspect:

The web page in this iframe is located at “/create”

This gives us following URL: https://challenge-0223.intigriti.io/create

Once we open this page the options to create a NFT become more clear. We can adapt our NFT via
some arrows and at the bottom we can upload our own background image.

https://challenge-0223.intigriti.io/create

First step is simple just use the functionality and see what the application is doing.
I changed my NFT via the arrows and uploaded a picture to be set as background.
Once finished click Save.

Our NFT is being created with our background and a new URL parameter is revealed “viewId”. We
can also notice that the view ID is reflected on the page and also the image name, image comment
and creation date. This could be interesting to check later.

Application functionalities are clear lets have a look at the source code behind this NFT application.
Inspect the web page again by right clicking it somewhere and choosing inspect.

I am not a JavaScript expert but I try to understand what is happening in the background. After
using the application some parts should become clear even if you are not that experienced with
JavaScript.

This concludes the recon part. Here is what I have in my notes at this moment:

- The viewId parameter reflects on the page and could possibly influence the path where the image
is loaded from.
- We can upload a background image. The source code uses image metadata via the EXIF library
which is eventually also reflected onto the page.
- EXIF metadata that is read by the application: UserComment, DateTime, OwnerName
- UserComment, DateTime and OwnerName are being sanitized by DOMPurify.
- ImageName seems to be set fixed to NFT.jpg and is thus not sanitized before being reflected onto
the page.

Step 2: ViewId parameter reflection

I decided to start with the viewId parameter reflection as this is easy to test. Change the parameter
and see how the application responds. I use simple HTML input to see if the HTML I input via the
parameter gets rendered onto the page.

This leads to nowhere as our input is being URL encoded and not rendered as HTML. For HTML
injection we would need to see our <s>test</s> converted to test.

Step 3: EXIF library

The next things we noted during our recon is the fact we can upload a background image and have
some control on the EXIF metadata being embedded into this image. The EXIF metadata “Image
name, comment and creation time” is being reflected onto the web page.

So how does this EXIF metadata actually work for images?
 I will show it here using a Linux machine via command line but this metadata can also be edited
via some photo editors or command line on Windows.

The command to see the metadata is pretty easy: exiftool background.png

The command outputs all metadata attached to this “background.png” image file.
We are interested in: “Image OwnerName, User comment and creation time” and normally also the
image name as we saw in the source code as this one is not sanitized by DOMpurify but that name
was not extracted from the EXIF data but set fixed to NFT.jpg.

OwnerName or UserComment are nowhere to be seen and creation times are already set. Let’s add
an Owner and User comment by ourselfs. I had no idea how to do this but quick Google search
shows following command can be used:

exiftool -UserComment='test123' -OwnerName='test456' background.png

Let’s check our changes that we made:

Ok great, we can now upload this adapted image as background for our NFT in the application and
check if we get some reflection.

This is good our User comment is reflected. Now the logical next step is to inject HTML and finally
a XSS payload but remember that we noticed something else during our recon. The image comment
before it is being added as HTML into the web page gets sanitized by DOMPurify. This is
something we will need to bypass.

Step 4: DOMPurify

So we have some reflection via the EXIF metadata on our background image but DOMPurify will
sanitize our input before being embedded in the HTML web page.

DOMPurify can be found here: https://github.com/cure53/DOMPurify

To be short about it: DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for
HTML, MathML and SVG.

An XSS sanitizer is a problem if we want to solve this challenge ;-)

First idea at this moment bypass DOMPurify, it had some bugs in the past via XSS mutations that
would bypass the sanitisation check and execute the XSS.
Which version is being used in this challenge that is what I checked first at this moment.

Version 2.4.1 of DOMPurify.

https://github.com/cure53/DOMPurify

Gareth Heyes from Portswigger had some nice bypasses that can be found here:
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

Unfortunately for us these are patched in version 2.1 so useless for this challenge. I went to the
Github page of DOMPurify to check on the release notes. We are facing version 2.4.1 so my
interest is to see what they fixed in later versions if those exist.
(https://github.com/cure53/DOMPurify/releases)

DOMPurify 2.4.2 which is the release after the one we are facing has a prototype pollution fix so it
might be the application code is vulnerable to this prototype pollution and that we can use this to
trick the DOMPurify sanitization to let our XSS payload bypass.

I did some Googling at this point for @kevin-mizu to see if somewhere this prototype pollution
exploit was made public.

I checked this Twitter feed for example and other Google hits I got but could not find the exploit or

https://github.com/cure53/DOMPurify/releases
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

any steps how to perform this prototype pollution attack. This is for me a dead end as researching
and trying to figure out how to perform the attack will be to time consuming and probably I will
never find it.

Step 5: Image name reflection

The DOMPurify bypass is a dead end for me at this moment. I got back to the notes taken after
recon and this was still there:

ImageName seems to be set fixed to NFT.jpg and is thus not sanitized before being reflected onto
the page.

The only reflection on the web page not being sanitized is the image name. There is only 1 problem
the developers put a fixed name for the image in the source code. As they set a fixed name they
probably trust that this cannot be altered so in their mind no sanitisation check is needed.

The question that now rises: Can we change the image name before it gets embedded into the
HTML web page?

The image name is being set fixed to NFT.jpg in the JSON code. If you look closely to this
“imgobj” JSON above we do control a part of this JSON and that is the image comment
(imgComment) via the EXIF metadata.

So the imgobj will be following JSON:
{"imgName":"NFT.jpg","imgColorType": " 02/15/2023, 21:22:58 " ,"imgComment": " test123 " }

First the imgobj JSON is being created by the developers of this application and then they parse
each object of this JSON separately to be added to the HTML source code. We are controlling the
imgComment inside this JSON via our uploaded background image metadata.

If you know a bit about JSON you know this can become tricky to parse the JSON object if a users
controls some input.

We can add what we want as UserComment so we are controlling the last part of the JSON object
and that is interesting.

What if we add in our image background as metadata in the UserComment the imgName again?

This would mean the imgobj will end up with following JSON:
{"imgName":"NFT.jpg","imgColorType": " 02/15/2023, 21:22:58 " ,"imgComment": " test123 ",
"imgName":"ANYTHINGWEWANT" }

Notice we can add an extra imgName key into the JSON. It will then depend on the application
parsing this which it will choose as output to be shown on the web page and in most cases it will
parse the first imgName key and then it will get to the second imgName key and forget about the
first one and just overwrite it :-)

We need to inject in the “strval” variable and be sure to keep the JSON valid so our injected
metadata needs to look like this:

test123","imgName":"

test123", This closes the imgComment JSON key nicely

"imgName":"<img src=x
onerror=alert(document.domain)>

We add a new key with the imgName but
without closing with “ because the JavaScript
code will do this for us.

We are adding the red part in the JSON example below:

{"imgName":"NFT.jpg","imgColorType": " 02/15/2023, 21:22:58 " ,"imgComment": " test123 ",
"imgName":"" }

Following command needs to be done with exiftool:
exiftool -UserComment='test123","imgName":"'
background.png

We upload the background again in the NFT application and create a new NFT image. This will fire
the XSS payload as the JavaScript parsing chooses the second image name JSON key as the one
being rendered into the page.

I added a breakpoint so you can see the altered imgobj JSON

The image name which was hard coded set to NFT.jpg is skipped due to our second JSON key
being added and JSON parsing forgets about the first key. No DOMPurify sanitisation as the
developer was sure the image name could not be changed.

You can now deliver your URL (Add your unique ID): https://challenge-0223.intigriti.io/view?
viewId=YOURID to any victim and the XSS will fire.

https://challenge-0223.intigriti.io/view?viewId=YOURID
https://challenge-0223.intigriti.io/view?viewId=YOURID

