
Intigriti January 2025 Challenge: XSS Challenge 0125 by 0xGodson_

In January ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by community member 0xGodson_.

Rules of the challenge

•Should work on the latest version of Chrome and FireFox.
•Should leverage a cross site scripting vulnerability on this domain.
•Shouldn't be self-XSS or related to MiTM attacks.
•Should require no user interaction.

Challenge

To simplify a victim needs to visit our crafted web URL for the challenge page and arbitrary
JavaScript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

The XSS (Cross Site Scripting) attack

Step 1: Recon

It is always important to carefully check the target you are trying to attack and look around for
possible weak spots. Use the web application and check the JavaScript source code. The better you
know how an application works the more chance you will have to find vulnerabilities.

The challenge start at this URL: https://challenge-0125.intigriti.io/ but shows payloads can be tested
here: https://challenge-0125.intigriti.io/challenge

A simple web page where we can enter our name. We approach the page as a normal end user of the
application and enter our name to see how the application reacts.

https://challenge-0125.intigriti.io/
https://challenge-0125.intigriti.io/challenge

A popup appears that welcomes us with our first name. This first action reveals the application uses
an URL parameter “text” for our input: https://challenge-0125.intigriti.io/challenge ?text=Joren

When testing for XSS attacks I always start simple with HTML injection. Once I can achieve
HTML injection I will try to build on that further to achieve XSS.

Lets try to achieve HTML injection with following payload: <s>test</s>. If we see test (with strike-
through) reflected in the application we already achieve a first step.
The URL with payload will look like following: https://challenge-0125.intigriti.io/challenge ?
text = <s>test</s>

Testing this results in the application redirecting back to the home page to enter your name. This
shows the application has some kind of filtering or WAF (Web Application Firewall) blocking our
HTML injection payloads.

This means it would make no sense to start throwing XSS payloads blindly at the application as we
will need to bypass the filter. At this point after our initial recon the next steps look like following.

1) Determine which filtering or WAF (Web Application Firewall) is used to block
malicious payloads.
2) Achieve HTML injection.
3) Build further on our HTML injection and achieve XSS.

https://challenge-0125.intigriti.io/challenge?text
https://challenge-0125.intigriti.io/challenge?text
https://challenge-0125.intigriti.io/challenge?text=Joren
https://challenge-0125.intigriti.io/challenge?text=Joren

Step 2: Deep dive into the source code

Another important step to achieve the filtering bypass is to inspect the application source code. This
will help in our recon to find weak spots in the applications defense.

Right click on the browser window and click inspect. This will open the DevTools.

Once DevTools is opened move to the “Sources” tab and double click the challenge page to view
the source code.

In this case all the web application code is embedded in one page. So CSS, HTML and JavaScript
are put into the same page. Often the CSS and JavaScript will be split and organized into different
files.

The top of the page contains the CSS styling and animation. This is not interesting for the challenge
and can be ignored. So we can ignore everything between the <style>body{...</style> tags.

After the CSS styling we get the HTML body part. This contains the HTML code for the textForm
where we enter our first name. As this part is static HTML code it can be ignored as not interesting
for the challenge.

Now the interesting part starts. Between <script>...</script> tags the JavaScript for this web
application is defined. This is something we should check carefully.

Here a copy of the full JavaScript code between the script tags:

 <script>
 function XSS() {
 return decodeURIComponent(window.location.search).includes('<') || decodeURIComponent(window.location.search).includes('>') ||
decodeURIComponent(window.location.hash).includes('<') || decodeURIComponent(window.location.hash).includes('>')
 }
 function getParameterByName(name) {
 var url = window.location.href;
 name = name.replace(/[\[\]]/g, "\\$&");
 var regex = new RegExp("[?&]" + name + "(=([^&#]*)|&|#|$)");
 results = regex.exec(url);
 if (!results) return null;
 if (!results[2]) return '';
 return decodeURIComponent(results[2].replace(/\+/g, " "));
 }

 // Function to redirect on form submit
 function redirectToText(event) {
 event.preventDefault();
 const inputBox = document.getElementById('inputBox');
 const text = encodeURIComponent(inputBox.value);
 window.location.href = `/challenge?text=${text}`;
 }

 // Function to display modal if 'text' query param exists
 function checkQueryParam() {
 const text = getParameterByName('text');
 if (text && XSS() === false) {
 const modal = document.getElementById('modal');
 const modalText = document.getElementById('modalText');
 modalText.innerHTML = `Welcome, ${text}!`;
 textForm.remove()
 modal.style.display = 'flex';
 }
 }

 // Function to close the modal
 function closeModal() {
 location.replace('/challenge')
 }

 // Function to generate random color
 function getRandomColor() {
 const letters = '0123456789ABCDEF';
 let color = '#';
 for (let i = 0; i < 6; i++) {
 color += letters[Math.floor(Math.random() * 16)];
 }
 return color;
 }

 // Function to generate falling particles
 function generateFallingParticles() {
 const particlesContainer = document.getElementById("particles");

 // Generate 100 particles with different animations, positions, and colors
 for (let i = 0; i < 100; i++) {
 let particle = document.createElement("div");
 particle.classList.add("falling-particle");

 // Randomize the particle's left position
 particle.style.left = Math.random() * 100 + "vw"; // Left position from 0 to 100% of viewport width

 // Randomize the particle's color
 particle.style.backgroundColor = getRandomColor();

 // Randomize animation delays
 particle.style.animationDelay = Math.random() * 5 + "s"; // Random delay for staggered fall
 particlesContainer.appendChild(particle);
 }
 }
 // Generate particles when the page loads
 window.onload = function () {
 generateFallingParticles();
 checkQueryParam();
 };
 </script>

This can be pretty overwhelming at first sight. Splitting it in smaller pieces can help. Reading the
JavaScript code we can see it is split into different functions by the developer who created the
application. I approached it by checking each function one by one.

From the source code comments it is clear we can skip following functions as they are only used to
generate and color the falling snow particles: “function getRandomColor(), function
generateFallingParticles()”

Now I want to figure out what the JavaScript source code is doing when I enter a non malicious
payload into the URL “text” parameter. We load following URL: https://challenge-
0125.intigriti.io/challenge?text=test

With the browser DevTools open we can set breakpoints where we want the JavaScript code
execution to stop so we can inspect it better. I first placed a breakpoint after each interesting
function to see which route the code takes. In the “Sources” tab open the source code and place
breakpoint by clicking line number where you want the JavaScript code execution to stop.

https://challenge-0125.intigriti.io/challenge?text=test
https://challenge-0125.intigriti.io/challenge?text=test

Once the breakpoints are set reload the web page with the URL we used previously:
https://challenge-0125.intigriti.io/challenge?text=test

We first hit the “window.onload” function which is normal as we are reloading the page. The page
onload function triggers the for us non interesting “generateFallingParticles()” function and also the
“checkQueryParam()” function which will be our next breakpoint.

Press F8 to advance towards the next breakpoint. As we have seen in the previous breakpoint this
will be the “checkQueryParam()” function we hit now.

This “checkQueryParam()” function immediately invokes another function “getParameterByName”

Here there is no code invoking a new function so it goes through all the steps of this
“getParameterByName” function and at the end it returns something back towards the previous
“checkQueryParam()” function.

https://challenge-0125.intigriti.io/challenge?text=test

We are returned to the “checkQueryParam()” function with the output of the
“getParameterByName” function. If you hover over the “text” variable you will now see it contains
our URL parameter input “test”

Back into the “checkQueryParam()” we see an if statement with a logical AND operator. Our
returned “text” goes into the logical AND with the XSS() function. This steps invokes the next
function XSS().

The output coming from the XSS() function is returned back towards the “checkQueryParam()”
function finishing the if statement there with the logical AND operator. This then loads the full web
page meaning we went through all the JavaScript code.

After this first high level loop over the JavaScript code we can conclude following.

- The main function is “checkQueryParam()” which invokes the other functions who return the
necessary data to load the web page. We have following JavaScript functions structure:

window.onload

checkQueryParam()

 getParameterByName() XSS()

Step 3: The main JavaScript function: “checkQueryParam()”

 // Function to display modal if 'text' query param exists
 function checkQueryParam() {
 const text = getParameterByName('text');
 if (text && XSS() === false) {
 const modal = document.getElementById('modal');
 const modalText = document.getElementById('modalText');
 modalText.innerHTML = `Welcome, ${text}!`;
 textForm.remove()
 modal.style.display = 'flex';
 }
 }

The main JavaScript function as we noticed earlier first initiates the “getParameterByName”
function so it gets a value returned for the “text” variable.

Then we enter an if loop with a logical AND operator which expects an outcome “false” to proceed
inside with the JavaScript code inside the loop.

The logical AND is explained here:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND

If we can get the if loop to be in the “false” condition the remaining JavaScript code will add the
“text” variable into the HTML source code. This is our input name and thus the point where we
would like to first inject HTML injection and later inject the XSS payload.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND

Step 4: The “getParameterByName” JavaScript function

It would be tempting to immediately look into the JavaScript XSS() function and see if we can get it
to return false towards our main “checkQueryParam()” function but first the
“getParameterByName” function was called just before the if loop.

 function getParameterByName(name) {
 var url = window.location.href;
 name = name.replace(/[\[\]]/g, "\\$&");
 var regex = new RegExp("[?&]" + name + "(=([^&#]*)|&|#|$)");
 results = regex.exec(url);
 if (!results) return null;
 if (!results[2]) return '';
 return decodeURIComponent(results[2].replace(/\+/g, " "));
 }

This function takes the “window.location.href” which if you check via the DevTools of your
browser in the “console” tab results in the complete URL and puts this in the “url” variable.

The “name” variable will always be “text” as this is hard-coded send by the “checkQueryParam()”
function. There is a “name.replace” done onto the “name” variable but as this is hard-coded set to
“text” that does not have any impact.

The “regex” variable is then created with a regular expression: [?&]text(=([^&#]*)|&|#|$)
This regular expression is used onto our “url” variable that contains the full URL: https://challenge-
0125.intigriti.io/challenge?text=test

If you look into the regex it actually looks for following part inside the complete URL:
- it needs to start with ? Or &
- then contains text=
- It should not contain $ or # multiple times or end with & or #

The regex roughly said looks in our complete URL for a query parameter like ?text= or &text=

Here we should take a note that the web application developer has choosen to use the regex
onto the complete URL by using “window.location.href” this is a bit weird as there are more
strict JavaScript functions to get the parameters like “window.location.search”

https://challenge-0125.intigriti.io/challenge?text=test
https://challenge-0125.intigriti.io/challenge?text=test

The regex output results in an array which is then checked by 2 if statement to be sure it is not
empty. So if we load an URL without the parameter ?text= or &text= or we leave the “text”
parameter empty this function will return “null” or nothing towards or main function and we will
have our input not embedded into the web page.

Conclusion for this function is that the web developer maybe made a mistake by taking the
complete URL to find the “text” parameter.

Step 5: The “XSS” JavaScript function

The last function is a short one:

 function XSS() {
 return decodeURIComponent(window.location.search).includes('<') || decodeURIComponent(window.location.search).includes('>') ||
decodeURIComponent(window.location.hash).includes('<') || decodeURIComponent(window.location.hash).includes('>')
 }

The function first does URL decoding and then uses “window.location.search” to search in the URL
for the parameters.

If we take our input URL: https://challenge-0125.intigriti.io/challenge?text=test then using the
“window.location.search” JavaScript function results in “?text=test”

You can easily test this in the browsers DevTools.

Together with “window.location.search” it also uses “window.location.hash” to find the fragment or
hash part of the URL. This can be demonstrated with following input URL: https://challenge-
0125.intigriti.io/challenge?text=test#testhash

“window.location.hash” results in the output: “#testhash”

https://challenge-0125.intigriti.io/challenge?text=test#testhash
https://challenge-0125.intigriti.io/challenge?text=test#testhash
https://challenge-0125.intigriti.io/challenge?text=test

The XSS() JavaScript function thus looks in the URL parameters and hash part for the characters:
“<” and “>”. This means that ones it finds “<” or “>” anywhere in the parameters or hash it will
return true towards our main function.

Step 6: Putting the puzzle together

From our main JavaScript function “checkQueryParam()” we need the if loop “if (text && XSS()
=== false)” to return false so we can proceed to embedding our payload.

We saw earlier the “text” variable will be true as it cannot be empty. This text variable contains our
input and thus we would like to use “<” or “>” here to attack the web application. We are faced
with the XSS() function returning true if it finds a “<” or “>” in the URL parameters or hash
fragment which we want to avoid as true && true will not be equal to false which we need.

If we look at the complete URL it means the parameter and hash part is useless for any attack
vector:
https://challenge-0125.intigriti.io/challenge ?text=test#testhash

But if we go back to the “getParameterByName()” JavaScript function it was a bit weird the
developer has choosen to check the complete URL for a “?text=” or “&text=” part via the regex.
This means we could embed “?text=” or “&text=” in another part of the URL that is not checked by
the XSS() function.

There is a discrepancy between the “getParameterByName()” and “XSS()” function. The “text”
parameter is allowed to be found in the complete URL while the XSS() function only checks the
parameters or hash part of the URL.

Where can we hide our “?text=” or “&text=” somewhere else in the URL?

For this we need to dig a bit deeper into the web server how that behaves.
The web application runs at this URL: https://challenge-0125.intigriti.io/challenge which means
there is a “challenge” folder on the web server.

The following screenshot shows a challenge folder being created with no content as an example.

Notice that I am located in the directory /home/joren/challenge. If I then give the command ../ I will
traverse downwards towards the /home/joren directory.

https://challenge-0125.intigriti.io/challenge
https://challenge-0125.intigriti.io/challenge?text=test#testhash

On a web server we could do following by actually giving a non existing path but returning towards
the existing “challenge” path with a traversal.

https://challenge-0125.intigriti.io/challenge/nonexistingfolder/..%2F

=> keep in mind the last / is URL encoded into %2F

This will return without any error to the challenge page and if we now check the XSS() and
getParameterByName() function it becomes interesting.

“window.location.search and window.location.hash” are empty as we never gave any parameters in
the URL so the XSS() function will return false as it will not find any “<” or “>” in the parameters
or hash which is perfect for us.

“windows.location.href” takes the complete URL including our “nonexistingfolder” to use in its
regex. This means if we do something like following:

https://challenge-0125.intigriti.io/challenge/&text=nonexistingfolder/..%2F

We should end up with “nonexitingfolder/../” as our name displayed by the application as the regex
will search for “?text= or &text=” in the complete URL and take the value it contains.

https://challenge-0125.intigriti.io/challenge/&text=nonexistingfolder/..%2F
https://challenge-0125.intigriti.io/challenge/nonexistingfolder/..%2F

That works and we bypassed the XSS() function as it sees no parameters like ?text= and nothing in
the hash part :-)

Lets build further to a HTML injection by adding the value “<s>test</s>” into our fake path (be
sure to URL encode the / into %2F):

https://challenge-0125.intigriti.io/challenge/&text =<s>test<%2Fs>/..%2F

That does not work :-(because we use </s> as the end or our payload which is seen as a new part of
the URL path due to the / character. Luckily browsers are always trying to fix broken HTML code
so we can input following: https://challenge-0125.intigriti.io/challenge/&text =<s>test/..%2F

Exactly what we want. We achieved HTML injection. The browser fixed our <s>test to working
HTML in the source code and converted it to <s>test</s>.

https://challenge-0125.intigriti.io/challenge/&text
https://challenge-0125.intigriti.io/challenge/&text=nonexistingfolder/..%2F
https://challenge-0125.intigriti.io/challenge/&text=nonexistingfolder/..%2F
https://challenge-0125.intigriti.io/challenge/&text

The shortest way to achieve XSS would now be the payload
“<script>alert(document.domain)</script>” for example but the “checkQueryParam()” uses
“innerHTML” to add our input into the source code. “innerHTML” will not execute script tags so
we need to use another payload like following for example:

This gives following URL where spaces are replaced by + characters:
https://challenge-0125.intigriti.io/challenge/&text=
%3Cimg+src='x'+onerror='alert(document.domain)'%3E/..%2F

This one pops the alert and executes arbitrary JavaScript both in Chrome and Firefox and thus
solves this challenge with a successful XSS attack.

The XSS() function which normally sanitizes input by searching URL parameters and hash
fragments sees there are no parameters and also not a hash part in the URL because we did not use a
“?” in the URL so the function returns false as it cannot find any malicious character.

The “getParameterByName()” function does check the complete url and finds “&text=” in our
malicious URL as input. It takes the value of this “&text=” part and embeds it into the HTML
source code.

https://challenge-0125.intigriti.io/challenge/&text=%3Cimg+src='x'+onerror='alert(document.domain)'%3E/..%2F
https://challenge-0125.intigriti.io/challenge/&text=%3Cimg+src='x'+onerror='alert(document.domain)'%3E/..%2F

